Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Chaos ; 34(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38558051

ABSTRACT

We introduce a clustering coefficient for nondirected and directed hypergraphs, which we call the quad clustering coefficient. We determine the average quad clustering coefficient and its distribution in real-world hypergraphs and compare its value with those of random hypergraphs drawn from the configuration model. We find that real-world hypergraphs exhibit a nonnegligible fraction of nodes with a maximal value of the quad clustering coefficient, while we do not find such nodes in random hypergraphs. Interestingly, these highly clustered nodes can have large degrees and can be incident to hyperedges of large cardinality. Moreover, highly clustered nodes are not observed in an analysis based on the pairwise clustering coefficient of the associated projected graph that has binary interactions, and hence higher order interactions are required to identify nodes with a large quad clustering coefficient.

2.
J Stat Phys ; 191(3): 35, 2024.
Article in English | MEDLINE | ID: mdl-38455591

ABSTRACT

For continuous-time Markov chains we prove that, depending on the notion of effective affinity F, the probability of an edge current to ever become negative is either 1 if F<0 else ∼exp-F. The result generalizes a "noria" formula to multicyclic networks. We give operational insights on the effective affinity and compare several estimators, arguing that stopping problems may be more accurate in assessing the nonequilibrium nature of a system according to a local observer. Finally we elaborate on the similarity with the Boltzmann formula. The results are based on a constructive first-transition approach.

3.
Phys Rev E ; 105(1-1): 014305, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35193197

ABSTRACT

We analyze the stability of linear dynamical systems defined on sparse, random graphs with predator-prey, competitive, and mutualistic interactions. These systems are aimed at modeling the stability of fixed points in large systems defined on complex networks, such as ecosystems consisting of a large number of species that interact through a food web. We develop an exact theory for the spectral distribution and the leading eigenvalue of the corresponding sparse Jacobian matrices. This theory reveals that the nature of local interactions has a strong influence on a system's stability. We show that, in general, linear dynamical systems defined on random graphs with a prescribed degree distribution of unbounded support are unstable if they are large enough, implying a tradeoff between stability and diversity. Remarkably, in contrast to the generic case, antagonistic systems that contain only interactions of the predator-prey type can be stable in the infinite size limit. This feature for antagonistic systems is accompanied by a peculiar oscillatory behavior of the dynamical response of the system after a perturbation, when the mean degree of the graph is small enough. Moreover, for antagonistic systems we also find that there exist a dynamical phase transition and critical mean degree above which the response becomes nonoscillatory.

4.
Phys Biol ; 19(5)2022 07 13.
Article in English | MEDLINE | ID: mdl-35172289

ABSTRACT

We develop a theory for thermodynamic instabilities of complex fluids composed of many interacting chemical species organised in families. This model includes partially structured and partially random interactions and can be solved exactly using tools from random matrix theory. The model exhibits three kinds of fluid instabilities: one in which the species form a condensate with a local density that depends on their family (family condensation); one in which species demix in two phases depending on their family (family demixing); and one in which species demix in a random manner irrespective of their family (random demixing). We determine the critical spinodal density of the three types of instabilities and find that the critical spinodal density is finite for both family condensation and family demixing, while for random demixing the critical spinodal density grows as the square root of the number of species. We use the developed framework to describe phase-separation instability of the cytoplasm induced by a change in pH.


Subject(s)
Thermodynamics , Humans
6.
Eur Phys J E Soft Matter ; 44(2): 19, 2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33686567

ABSTRACT

Translation is one of the main steps in the synthesis of proteins. It consists of ribosomes that translate sequences of nucleotides encoded on mRNA into polypeptide sequences of amino acids. Ribosomes bound to mRNA move unidirectionally, while unbound ribosomes diffuse in the cytoplasm. It has been hypothesized that finite diffusion of ribosomes plays an important role in ribosome recycling and that mRNA circularization enhances the efficiency of translation, see e.g. Lodish et al. (Molecular cell biology, 8th edn, W.H. Freeman and Company, San Francisco, 2016). In order to estimate the effect of cytoplasmic diffusion on the rate of translation, we consider a totally asymmetric simple exclusion process coupled to a finite diffusive reservoir, which we call the ribosome transport model with diffusion. In this model, we derive an analytical expression for the rate of protein synthesis as a function of the diffusion constant of ribosomes, which is corroborated with results from continuous-time Monte Carlo simulations. Using a wide range of biological relevant parameters, we conclude that diffusion is not a rate limiting factor in translation initiation because diffusion is fast enough in biological cells.


Subject(s)
Ribosomes/metabolism , Amino Acid Sequence , Computer Simulation , Diffusion , Gene Expression Regulation , Models, Genetic , Monte Carlo Method , Movement , Peptides/genetics , RNA, Messenger/genetics , Ribosomes/ultrastructure
7.
Phys Rev Lett ; 126(4): 040604, 2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33576654

ABSTRACT

Although the spectral properties of random graphs have been a long-standing focus of network theory, the properties of right eigenvectors of directed graphs have so far eluded an exact analytic treatment. We present a general theory for the statistics of the right eigenvector components in directed random graphs with a prescribed degree distribution and with randomly weighted links. We obtain exact analytic expressions for the inverse participation ratio and show that right eigenvectors of directed random graphs with a small average degree are localized. Remarkably, if the fourth moment of the degree distribution is finite, then the critical mean degree of the localization transition is independent of the degree fluctuations, which is different from localization in undirected graphs that is governed by degree fluctuations. We also show that in the high connectivity limit the distribution of the right eigenvector components is solely determined by the degree distribution. For delocalized eigenvectors, we recover in this limit the universal results from standard random matrix theory that are independent of the degree distribution, while for localized eigenvectors the eigenvector distribution depends on the degree distribution.

8.
Phys Rev Lett ; 124(4): 040601, 2020 Jan 31.
Article in English | MEDLINE | ID: mdl-32058768

ABSTRACT

Events in mesoscopic systems often take place at first-passage times, as is for instance the case for a colloidal particle that escapes a metastable state. An interesting question is how much work an external agent has done on a particle when it escapes a metastable state. We develop a thermodynamic theory for processes in mesoscopic systems that terminate at stopping times, which generalize first-passage times. This theory implies a thermodynamic bound, reminiscent of the second law of thermodynamics, for the work exerted by an external protocol on a mesoscopic system at a stopping time. As an illustration, we use this law to bound the work required to stretch a polymer to a certain length or to let a particle escape from a metastable state.

9.
Phys Rev Lett ; 119(14): 140604, 2017 Oct 06.
Article in English | MEDLINE | ID: mdl-29053318

ABSTRACT

We derive an Itô stochastic differential equation for entropy production in nonequilibrium Langevin processes. Introducing a random-time transformation, entropy production obeys a one-dimensional drift-diffusion equation, independent of the underlying physical model. This transformation allows us to identify generic properties of entropy production. It also leads to an exact uncertainty equality relating the Fano factor of entropy production and the Fano factor of the random time, which we also generalize to non-steady-state conditions.

10.
Phys Rev Lett ; 118(1): 019901, 2017 Jan 06.
Article in English | MEDLINE | ID: mdl-28106406

ABSTRACT

This corrects the article DOI: 10.1103/PhysRevLett.117.224101.

11.
Phys Rev Lett ; 117(22): 224101, 2016 Nov 25.
Article in English | MEDLINE | ID: mdl-27925747

ABSTRACT

Spectra of sparse non-Hermitian random matrices determine the dynamics of complex processes on graphs. Eigenvalue outliers in the spectrum are of particular interest, since they determine the stationary state and the stability of dynamical processes. We present a general and exact theory for the eigenvalue outliers of random matrices with a local tree structure. For adjacency and Laplacian matrices of oriented random graphs, we derive analytical expressions for the eigenvalue outliers, the first moments of the distribution of eigenvector elements associated with an outlier, the support of the spectral density, and the spectral gap. We show that these spectral observables obey universal expressions, which hold for a broad class of oriented random matrices.

12.
Phys Rev Lett ; 115(25): 250602, 2015 Dec 18.
Article in English | MEDLINE | ID: mdl-26722911

ABSTRACT

We show that the steady-state entropy production rate of a stochastic process is inversely proportional to the minimal time needed to decide on the direction of the arrow of time. Here we apply Wald's sequential probability ratio test to optimally decide on the direction of time's arrow in stationary Markov processes. Furthermore, the steady-state entropy production rate can be estimated using mean first-passage times of suitable physical variables. We derive a first-passage time fluctuation theorem which implies that the decision time distributions for correct and wrong decisions are equal. Our results are illustrated by numerical simulations of two simple examples of nonequilibrium processes.


Subject(s)
Entropy , Models, Theoretical , Markov Chains
13.
Phys Biol ; 11(5): 056006, 2014 Sep 10.
Article in English | MEDLINE | ID: mdl-25204752

ABSTRACT

In cells and in in vitro assays the number of motor proteins involved in biological transport processes is far from being unlimited. The cytoskeletal binding sites are in contact with the same finite reservoir of motors (either the cytosol or the flow chamber) and hence compete for recruiting the available motors, potentially depleting the reservoir and affecting cytoskeletal transport. In this work we provide a theoretical framework in which to study, analytically and numerically, how motor density profiles and crowding along cytoskeletal filaments depend on the competition of motors for their binding sites. We propose two models in which finite processive motor proteins actively advance along cytoskeletal filaments and are continuously exchanged with the motor pool. We first look at homogeneous reservoirs and then examine the effects of free motor diffusion in the surrounding medium. We consider as a reference situation recent in vitro experimental setups of kinesin-8 motors binding and moving along microtubule filaments in a flow chamber. We investigate how the crowding of linear motor proteins moving on a filament can be regulated by the balance between supply (concentration of motor proteins in the flow chamber) and demand (total number of polymerized tubulin heterodimers). We present analytical results for the density profiles of bound motors and the reservoir depletion, and propose novel phase diagrams that present the formation of jams of motor proteins on the filament as a function of two tuneable experimental parameters: the motor protein concentration and the concentration of tubulins polymerized into cytoskeletal filaments. Extensive numerical simulations corroborate the analytical results for parameters in the experimental range and also address the effects of diffusion of motor proteins in the reservoir. We then propose experiments for validating our models and discuss how the 'supply-demand' effects can regulate motor traffic also in in vivo conditions.


Subject(s)
Cytoskeleton/metabolism , Models, Biological , Molecular Motor Proteins/metabolism , Animals , Computer Simulation , Protein Transport
14.
Phys Rev Lett ; 110(9): 098102, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23496747

ABSTRACT

We introduce the totally asymmetric simple exclusion process with Langmuir kinetics on a network as a microscopic model for active motor protein transport on the cytoskeleton, immersed in the diffusive cytoplasm. We discuss how the interplay between active transport along a network and infinite diffusion in a bulk reservoir leads to a heterogeneous matter distribution on various scales: we find three regimes for steady state transport, corresponding to the scale of the network, of individual segments, or local to sites. At low exchange rates strong density heterogeneities develop between different segments in the network. In this regime one has to consider the topological complexity of the whole network to describe transport. In contrast, at moderate exchange rates the transport through the network decouples, and the physics is determined by single segments and the local topology. At last, for very high exchange rates the homogeneous Langmuir process dominates the stationary state. We introduce effective rate diagrams for the network to identify these different regimes. Based on this method we develop an intuitive but generic picture of how the stationary state of excluded volume processes on complex networks can be understood in terms of the single-segment phase diagram.


Subject(s)
Cytoskeleton/metabolism , Models, Biological , Molecular Motor Proteins/metabolism , Biological Transport, Active , Diffusion , Kinetics
15.
Phys Rev Lett ; 107(6): 068702, 2011 Aug 05.
Article in English | MEDLINE | ID: mdl-21902376

ABSTRACT

We study the totally asymmetric simple exclusion process (TASEP) on complex networks, as a paradigmatic model for transport subject to excluded volume interactions. Building on TASEP phenomenology on a single segment and borrowing ideas from random networks we investigate the effect of connectivity on transport. In particular, we argue that the presence of disorder in the topology of vertices crucially modifies the transport features of a network: irregular networks involve homogeneous segments and have a bimodal distribution of edge densities, whereas regular networks are dominated by shocks leading to a unimodal density distribution. The proposed numerical approach of solving for mean-field transport on networks provides a general framework for studying TASEP on large networks, and is expected to generalize to other transport processes.


Subject(s)
Models, Theoretical , Algorithms , Poisson Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...