Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
NPJ Syst Biol Appl ; 3: 16034, 2017.
Article in English | MEDLINE | ID: mdl-28725482

ABSTRACT

The ErbB family of receptor tyrosine kinases comprises four members: epidermal growth factor receptor (EGFR/ErbB1), human EGFR 2 (HER2/ErbB2), ErbB3/HER3, and ErbB4/HER4. The first two members of this family, EGFR and HER2, have been implicated in tumorigenesis and cancer progression for several decades, and numerous drugs have now been approved that target these two proteins. Less attention, however, has been paid to the role of this family in mediating cancer cell survival and drug tolerance. To better understand the complex signal transduction network triggered by the ErbB receptor family, we built a computational model that quantitatively captures the dynamics of ErbB signaling. Sensitivity analysis identified ErbB3 as the most critical activator of phosphoinositide 3-kinase (PI3K) and Akt signaling, a key pro-survival pathway in cancer cells. Based on this insight, we designed a fully human monoclonal antibody, seribantumab (MM-121), that binds to ErbB3 and blocks signaling induced by the extracellular growth factors heregulin (HRG) and betacellulin (BTC). In this article, we present some of the key preclinical simulations and experimental data that formed the scientific foundation for three Phase 2 clinical trials in metastatic cancer. These trials were designed to determine if patients with advanced malignancies would derive benefit from the addition of seribantumab to standard-of-care drugs in platinum-resistant/refractory ovarian cancer, hormone receptor-positive HER2-negative breast cancer, and EGFR wild-type non-small cell lung cancer (NSCLC). From preclinical studies we learned that basal levels of ErbB3 phosphorylation correlate with response to seribantumab monotherapy in mouse xenograft models. As ErbB3 is rapidly dephosphorylated and hence difficult to measure clinically, we used the computational model to identify a set of five surrogate biomarkers that most directly affect the levels of p-ErbB3: HRG, BTC, EGFR, HER2, and ErbB3. Preclinically, the combined information from these five markers was sufficient to accurately predict which xenograft models would respond to seribantumab, and the single-most accurate predictor was HRG. When tested clinically in ovarian, breast and lung cancer, HRG mRNA expression was found to be both potentially prognostic of insensitivity to standard therapy and potentially predictive of benefit from the addition of seribantumab to standard of care therapy in all three indications. In addition, it was found that seribantumab was most active in cancers with low levels of HER2, consistent with preclinical predictions. Overall, our clinical studies and studies of others suggest that HRG expression defines a drug-tolerant cancer cell phenotype that persists in most solid tumor indications and may contribute to rapid clinical progression. To our knowledge, this is the first example of a drug designed and clinically tested using the principles of Systems Biology.

2.
Invest New Drugs ; 35(1): 68-78, 2017 02.
Article in English | MEDLINE | ID: mdl-27853996

ABSTRACT

Background HER3/EGFR heterodimers have been implicated as a mode of resistance to EGFR-directed therapies. Methods This Phase 1 trial assessed the tolerability, maximum tolerated dose (MTD) and pharmacokinetic (PK) properties of the HER-3 antibody seribantumab in combination with cetuximab (Part I) or cetuximab and irinotecan (Part II) in patients with EGFR-dependent cancers. In Part I, escalating doses of seribantumab and cetuximab were administered. In Part II of the trial, escalating doses of seribantumab/cetuximab were combined with irinotecan 180 mg/m2 administered every two weeks. Results 34 patients were enrolled in Part I (seribantumab/cetuximab) and 14 patients were enrolled in Part II (seribantumab/cetuximab/irinotecan). Common toxicities of seribantumab/cetuximab included acneiform rash, diarrhea, stomatitis, and paronychia. The MTD of Part I was seribantumab 40 mg/kg bolus, then 20 mg/kg weekly combined with cetuximab 400 mg/m2 bolus, then 250 mg/m2 IV weekly. Common toxicities reported in the seribantumab/cetuximab/irinotecan combination were similar to the Part I portion. However, toxicities were more frequent and severe with the triplet combination. There was one treatment-related death in Part II secondary to Grade 4 neutropenia and grade 3 diarrhea. Other dose-limiting toxicities in Part II were Grade 3 mucositis and Grade 3 diarrhea. A cholangiocarcinoma patient, previously untreated with EGFR-directed therapy, had a confirmed partial response (PR). One colorectal cancer patient, previously treated with EGFR-directed therapy, had an unconfirmed PR. Conclusions Seribantumab/cetuximab was well tolerated and patients experienced toxicities typical to EGFR inhibition. Unlike the seribantumab/cetuximab doublet, seribantumab/cetuximab/irinotecan was difficult to tolerate in this heavily pretreated population. There was limited efficacy of the combination therapy.


Subject(s)
Antibodies, Monoclonal , Antineoplastic Agents , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Camptothecin/analogs & derivatives , Cetuximab , Receptor, ErbB-3/immunology , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Camptothecin/adverse effects , Camptothecin/pharmacology , Camptothecin/therapeutic use , Cetuximab/adverse effects , Cetuximab/pharmacology , Cetuximab/therapeutic use , ErbB Receptors/genetics , Female , Humans , Irinotecan , Male , Maximum Tolerated Dose , Middle Aged , Treatment Outcome , Young Adult
3.
J Clin Oncol ; 34(36): 4345-4353, 2016 12 20.
Article in English | MEDLINE | ID: mdl-27998236

ABSTRACT

Purpose Seribantumab is a fully human immunoglobulin G2 monoclonal antibody that binds to human epidermal growth factor receptor (HER) 3 (ErbB3), blocking heregulin (HRG) -mediated ErbB3 signaling and inducing ErbB3 receptor downregulation. This open-label randomized phase II study evaluated progression-free survival (PFS) with seribantumab in combination with once-per-week paclitaxel compared with paclitaxel alone in patients with platinum-resistant or -refractory ovarian cancer. A key secondary objective was to determine if any of five prespecified biomarkers predicted benefit from seribantumab. Patients and Methods Patients with platinum-resistant or -refractory epithelial ovarian, fallopian tube, or primary peritoneal cancer were randomly assigned at a ratio of two to one to receive seribantumab plus paclitaxel or paclitaxel alone. Patients underwent pretreatment core needle biopsy; archival tumor samples were also obtained to support biomarker analyses. Results A total of 223 patients were randomly assigned (seribantumab plus paclitaxel, n = 140; paclitaxel alone, n = 83). Median PFS in the unselected intent-to-treat population was 3.75 months with seribantumab plus paclitaxel compared with 3.68 months with paclitaxel alone (hazard ratio [HR], 1.027; 95% CI, 0.741 to 1.425; P = .864). Among patients whose tumors had detectable HRG mRNA and low HER2 (n = 57 [38%] of 151 with available biomarker data), increased treatment benefit was observed in those receiving seribantumab plus paclitaxel compared with paclitaxel alone (PFS HR, 0.37; 95% CI, 0.18 to 0.76; P = .007). The HR in patients not meeting these criteria was 1.80 (95% CI, 1.08 to 2.98; P = .023). Conclusion The addition of seribantumab to paclitaxel did not result in improved PFS in unselected patients. Exploratory analyses suggest that detectable HRG and low HER2, biomarkers that link directly to the mechanism of action of seribantumab, identified patients who might benefit from this combination. Future clinical trials are needed to validate this finding and should preselect for HRG expression and focus on cancers with low HER2 levels.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Biomarkers, Tumor/analysis , Ovarian Neoplasms/drug therapy , Paclitaxel/administration & dosage , Aged , Antibodies, Monoclonal, Humanized , Disease-Free Survival , Dose-Response Relationship, Drug , Drug Administration Schedule , Female , Humans , Kaplan-Meier Estimate , Middle Aged , Neoplasm Invasiveness/pathology , Neoplasm Staging , Ovarian Neoplasms/mortality , Ovarian Neoplasms/pathology , Prognosis , Proportional Hazards Models , Prospective Studies , Risk Assessment , Survival Analysis , Treatment Outcome
4.
Sci Transl Med ; 8(324): 324ra14, 2016 Feb 03.
Article in English | MEDLINE | ID: mdl-26843189

ABSTRACT

The anti-epidermal growth factor receptor (EGFR) antibodies cetuximab and panitumumab are used to treat RAS wild-type colorectal cancers (CRCs), but their efficacy is limited by the emergence of acquired drug resistance. After EGFR blockade, about 20% of CRCs develop mutations in the EGFR extracellular domain (ECD) that impair antibody binding and are associated with clinical relapse. We hypothesized that EGFR ECD-resistant variants could be targeted by the recently developed oligoclonal antibody MM-151 that binds multiple regions of the EGFR ECD. MM-151 inhibits EGFR signaling and cell growth in preclinical models, including patient-derived cells carrying mutant EGFR. Upon MM-151 treatment, EGFR ECD mutations decline in circulating cell-free tumor DNA (ctDNA) of CRC patients who previously developed resistance to EGFR blockade. These data provide molecular rationale for the clinical use of MM-151 in patients who become resistant to cetuximab or panitumumab as a result of EGFR ECD mutations.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Cetuximab/therapeutic use , Colorectal Neoplasms/drug therapy , Drug Resistance, Neoplasm , ErbB Receptors/genetics , Mutation/genetics , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal, Humanized , Cell-Free System , Cetuximab/pharmacology , Colorectal Neoplasms/blood , Colorectal Neoplasms/genetics , DNA, Neoplasm/metabolism , Drug Resistance, Neoplasm/drug effects , Epitopes/chemistry , ErbB Receptors/chemistry , HEK293 Cells , Humans , Ligands , Panitumumab , Protein Domains , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...