Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Rep ; 42(10): 1611-1628, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37578541

ABSTRACT

KEY MESSAGE: Transgenic sugarcane overexpressing BRK1 showed improved tolerance to drought stress through modulation of actin polymerization and formation of interlocking marginal lobes in epidermal leaf cells, a typical feature associated with BRK1 expression under drought stress. BRICK1 (BRK1) genes promote leaf epidermal cell morphogenesis and division in plants that involves local actin polymerization. Although the changes in actin filament organization during drought have been reported, the role of BRK in stress tolerance remains unknown. In our previous work, the drought-tolerant Erianthus arundinaceus exhibited high levels of the BRK gene expression under drought stress. Therefore, in the present study, the drought-responsive gene, BRK1 from Saccharum spontaneum, was transformed into sugarcane to test if it conferred drought tolerance in the commercial sugarcane cultivar Co 86032. The transgenic lines were subjected to drought stress, and analyzed using physiological parameters for drought stress. The drought-induced BRK1-overexpressing lines of sugarcane exhibited significantly higher transgene expression compared with the wild-type control and also showed improved physiological parameters. In addition, the formation of interlocking marginal lobes in the epidermal leaf cells, a typical feature associated with BRK1 expression, was observed in all transgenic BRK1 lines during drought stress. This is the first report to suggest that BRK1 plays a role in sugarcane acclimation to drought stress and may prove to be a potential candidate in genetic engineering of plants for enhanced biomass production under drought stress conditions.


Subject(s)
Drought Resistance , Saccharum , Saccharum/physiology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Actins/genetics , Droughts , Stress, Physiological/genetics , Gene Expression Regulation, Plant/genetics
2.
Front Genet ; 13: 880195, 2022.
Article in English | MEDLINE | ID: mdl-35910205

ABSTRACT

The global climate change and unfavourable abiotic and biotic factors are limiting agricultural productivity and therefore intensifying the challenges for crop scientists to meet the rising demand for global food supply. The introduction of applied genetics to agriculture through plant breeding facilitated the development of hybrid varieties with improved crop productivity. However, the development of new varieties with the existing gene pools poses a challenge for crop breeders. Genetic engineering holds the potential to broaden genetic diversity by the introduction of new genes into crops. But the random insertion of foreign DNA into the plant's nuclear genome often leads to transgene silencing. Recent advances in the field of plant breeding include the development of a new breeding technique called genome editing. Genome editing technologies have emerged as powerful tools to precisely modify the crop genomes at specific sites in the genome, which has been the longstanding goal of plant breeders. The precise modification of the target genome, the absence of foreign DNA in the genome-edited plants, and the faster and cheaper method of genome modification are the remarkable features of the genome-editing technology that have resulted in its widespread application in crop breeding in less than a decade. This review focuses on the advances in crop breeding through precision genome editing. This review includes: an overview of the different breeding approaches for crop improvement; genome editing tools and their mechanism of action and application of the most widely used genome editing technology, CRISPR/Cas9, for crop improvement especially for agronomic traits such as disease resistance, abiotic stress tolerance, herbicide tolerance, yield and quality improvement, reduction of anti-nutrients, and improved shelf life; and an update on the regulatory approval of the genome-edited crops. This review also throws a light on development of high-yielding climate-resilient crops through precision genome editing.

3.
3 Biotech ; 8(4): 195, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29581927

ABSTRACT

Sugarcane (Saccharum sp.) is predominantly grown in both tropics and subtropics in India, and the subtropics alone contribute more than half of sugarcane production. Sugarcane active growth period in subtropics is restricted to 8-9 months mainly due to winter's low temperature stress prevailing during November to February every year. Being a commercial crop, tolerance to low temperature is important in sugarcane improvement programs. Development of cold tolerant sugarcane varieties require a deep knowledge on molecular mechanism naturally adapted by cold tolerant genotypes during low temperature stress. To understand gene regulation under low temperature stress, control and stressed (10 °C, 24 h) leaf samples of cold tolerant S. spontaneum IND 00-1037 collected from high altitude region in Arunachal Pradesh were used for transcriptome analysis using the Illumina NextSeq 500 platform with paired-end sequencing method. Raw reads of 5.1 GB (control) and 5.3 GB (stressed) obtained were assembled using trinity and annotated with UNIPROT, KEGG, GO, COG and SUCEST databases, and transcriptome was validated using qRT-PCR. The differential gene expression (DGE) analysis showed that 2583 genes were upregulated and 3302 genes were down-regulated upon low temperature stress. A total of 170 cold responsive transcriptional factors belonging to 30 families were differentially regulated. CBF6 (C-binding factor), a DNA binding transcriptional activation protein associated with cold acclimation and freezing tolerance was differentially upregulated. Many low temperature responsive genes involved in various metabolic pathways, viz. cold sensing through membrane fluidity, calcium and lipid signaling genes, MAP kinases, phytohormone signaling and biosynthetic genes, antioxidative enzymes, membrane and cellular stabilizing genes, genes involved in biosynthesis of polyunsaturated fatty acids, chaperones, LEA proteins, soluble sugars, osmoprotectants, lignin and pectin biosynthetic genes were also differentially upregulated. Potential cold responsive genes and transcriptional factors involved in cold tolerance mechanism in cold tolerant S. spontaneum IND 00-1037 were identified. Together, this study provides insights into the cold tolerance to low temperature stress in S. spontaneum, thus opening applications in the genetic improvement of cold stress tolerance in sugarcane.

SELECTION OF CITATIONS
SEARCH DETAIL
...