Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Transplant ; 16(7): 2016-29, 2016 07.
Article in English | MEDLINE | ID: mdl-26749114

ABSTRACT

Neural transplantation is a promising therapeutic approach for neurodegenerative diseases; however, many patients receiving intracerebral fetal allografts exhibit signs of immunization to donor antigens that could compromise the graft. In this context, we intracerebrally transplanted mesencephalic pig xenografts into primates to identify a suitable strategy to enable long-term cell survival, maturation, and differentiation. Parkinsonian primates received WT or CTLA4-Ig transgenic porcine xenografts and different durations of peripheral immunosuppression to test whether systemic plus graft-mediated local immunosuppression might avoid rejection. A striking recovery of spontaneous locomotion was observed in primates receiving systemic plus local immunosuppression for 6 mo. Recovery was associated with restoration of dopaminergic activity detected both by positron emission tomography imaging and histological examination. Local infiltration by T cells and CD80/86+ microglial cells expressing indoleamine 2,3-dioxigenase were observed only in CTLA4-Ig recipients. Results suggest that in this primate neurotransplantation model, peripheral immunosuppression is indispensable to achieve the long-term survival of porcine neuronal xenografts that is required to study the beneficial immunomodulatory effect of local blockade of T cell costimulation.


Subject(s)
CTLA-4 Antigen/immunology , Cell- and Tissue-Based Therapy/methods , Immunosuppression Therapy/methods , Neurons/cytology , Parkinson Disease/therapy , T-Lymphocytes/immunology , Animals , Animals, Genetically Modified , Cells, Cultured , Female , Graft Rejection/drug therapy , Graft Rejection/immunology , Graft Survival/drug effects , Graft Survival/immunology , Heterografts , Immunosuppressive Agents/therapeutic use , Lymphocyte Activation , Macaca fascicularis , Male , Neurons/immunology , Parkinson Disease/immunology , Sus scrofa , Transplantation, Heterologous
2.
Am J Transplant ; 15(1): 88-100, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25488654

ABSTRACT

Selective targeting of CD28 might represent an effective immunomodulation strategy by preventing T cell costimulation, while favoring coinhibition since inhibitory signals transmitted through CTLA-4; PD-L1 and B7 would not be affected. We previously showed in vitro and in vivo that anti-CD28 antagonists suppress effector T cells while enhancing regulatory T cell (Treg) suppression and immune tolerance. Here, we evaluate FR104, a novel antagonist pegylated anti-CD28 Fab' antibody fragment, in nonhuman primate renal allotransplantation. FR104, in association with low doses of tacrolimus or with rapamycin in a steroid-free therapy, prevents acute rejection and alloantibody development and prolongs allograft survival. However, when FR104 was associated with mycophenolate mofetil and steroids, half of the recipients rejected their grafts prematurely. Finally, we observed an accumulation of Helios-negative Tregs in the blood and within the graft after FR104 therapy, confirmed by Treg-specific demethylated region DNA analysis. In conclusion, FR104 reinforces immunosuppression in calcineurin inhibitor (CNI)-low or CNI-free protocols, without the need of steroids. Accumulation of intragraft Tregs suggested the promotion of immunoregulatory mechanisms. Selective CD28 antagonists might become an alternative CNI-sparing strategy to B7 antagonists for kidney transplant recipients.


Subject(s)
CD28 Antigens/immunology , Calcineurin Inhibitors/pharmacology , Graft Rejection/immunology , Graft Survival/immunology , Immunization , Immunoglobulin Fab Fragments/pharmacology , Kidney Transplantation , Animals , Blotting, Western , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Graft Rejection/drug therapy , Graft Survival/drug effects , Immunoenzyme Techniques , Immunosuppression Therapy , Kidney Diseases/immunology , Kidney Diseases/surgery , Papio , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , T-Lymphocytes, Regulatory/immunology , Transplantation, Homologous
3.
Am J Transplant ; 14(5): 1109-19, 2014 May.
Article in English | MEDLINE | ID: mdl-24612827

ABSTRACT

Xenogenic fetal neuroblasts are considered as a potential source of transplantable cells for the treatment of neurodegenerative diseases, but immunological barriers limit their use in the clinic. While considerable work has been performed to decipher the role of the cellular immune response in the rejection of intracerebral xenotransplants, there is much still to learn about the humoral reaction. To this end, the IgG response to the transplantation of fetal porcine neural cells (PNC) into the rat brain was analyzed. Rat sera did not contain preformed antibodies against PNC, but elicited anti-porcine IgG was clearly detected in the host blood once the graft was rejected. Only the IgG1 and IgG2a subclasses were up-regulated, suggesting a T-helper 2 immune response. The main target of these elicited IgG antibodies was porcine neurons, as determined by double labeling in vitro and in vivo. Complement and anti-porcine IgG were present in the rejecting grafts, suggesting an active role of the host humoral response in graft rejection. This hypothesis was confirmed by the prolonged survival of fetal porcine neurons in the striatum of immunoglobulin-deficient rats. These data suggest that the prolonged survival of intracerebral xenotransplants relies on the control of both cell-mediated and humoral immune responses.


Subject(s)
Antibodies, Anti-Idiotypic/immunology , Cerebral Cortex/immunology , Graft Rejection/immunology , Immunoglobulin G/immunology , Neurons/immunology , Transplantation, Heterologous , Animals , Antibodies, Anti-Idiotypic/pharmacology , Cells, Cultured , Cerebral Cortex/cytology , Cerebral Cortex/surgery , Flow Cytometry , Graft Rejection/metabolism , Graft Rejection/pathology , Graft Survival , Immunoenzyme Techniques , Neurons/cytology , Neurons/transplantation , Rats , Rats, Inbred Lew , Swine
4.
Methods Mol Biol ; 879: 147-64, 2012.
Article in English | MEDLINE | ID: mdl-22610559

ABSTRACT

Treatments for neurodegenerative diseases have little impact on the long-term patient health. However, cellular transplants of neuroblasts derived from the aborted embryonic brain tissue in animal models of neurodegenerative disorders and in patients have demonstrated survival and functionality in the brain. However, ethical and functional problems due to the use of this fetal tissue stopped most of the clinical trials. Therefore, new cell sources were needed, and scientists focused on neural (NSCs) and mesenchymal stem cells (MSCs). When transplanted in the brain of animals with Parkinson's or Huntington's disease, NSCs and MSCs were able to induce partial functional recovery by promoting neuroprotection and immunomodulation. MSCs are more readily accessible than NSCs due to sources such as the bone marrow. However, MSCs are not capable of differentiating into neurons in vivo where NSCs are. Thus, transplantation of NSCs and MSCs is interesting for brain regenerative medicine. In this chapter, we detail the methods for NSCs and MSCs isolation as well as the transplantation procedures used to treat rodent models of neurodegenerative damage.


Subject(s)
Mesenchymal Stem Cells/cytology , Neural Stem Cells/cytology , Neurodegenerative Diseases/therapy , Stem Cell Transplantation/methods , Animals , Cell Separation/methods , Cells, Cultured , Rats , Rats, Sprague-Dawley
5.
Transgenic Res ; 19(5): 745-63, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20094912

ABSTRACT

Adoptive cell transfer studies in regenerative research and identification of genetically modified cells after gene therapy in vivo require unequivocally identifying and tracking the donor cells in the host tissues, ideally over several days or for up to several months. The use of reporter genes allows identifying the transferred cells but unfortunately most are immunogenic to wild-type hosts and thus trigger rejection in few days. The availability of transgenic animals from the same strain that would express either high levels of the transgene to identify the cells or low levels but that would be tolerant to the transgene would allow performing long-term analysis of labelled cells. Herein, using lentiviral vectors we develop two new lines of GFP-expressing transgenic rats displaying different levels and patterns of GFP-expression. The "high-expresser" line (GFP(high)) displayed high expression in most tissues, including adult neurons and neural precursors, mesenchymal stem cells and in all leukocytes subtypes analysed, including myeloid and plasmacytoid dendritic cells, cells that have not or only poorly characterized in previous GFP-transgenic rats. These GFP(high)-transgenic rats could be useful for transplantation and immunological studies using GFP-positive cells/tissue. The "low-expresser" line expressed very low levels of GFP only in the liver and in less than 5% of lymphoid cells. We demonstrate these animals did not develop detectable humoral and cellular immune responses against both transferred GFP-positive splenocytes and lentivirus-mediated GFP gene transfer. Thus, these GFP-transgenic rats represent useful tools for regenerative medicine and gene therapy.


Subject(s)
Genes, Reporter , Genetic Therapy , Green Fluorescent Proteins/genetics , Rats, Transgenic/genetics , Regenerative Medicine , Adoptive Transfer , Animals , Cell Differentiation , Gene Expression Regulation , Genes, Synthetic , Genetic Vectors/genetics , Green Fluorescent Proteins/biosynthesis , Lentivirus/genetics , Leukocytes/metabolism , Liver/metabolism , Lymphocytes/metabolism , Mesenchymal Stem Cells/metabolism , Neurons/metabolism , Organ Specificity , Rats , Rats, Sprague-Dawley , Recombinant Fusion Proteins/analysis , Recombinant Fusion Proteins/biosynthesis
6.
Exp Neurol ; 161(1): 259-72, 2000 Jan.
Article in English | MEDLINE | ID: mdl-10683292

ABSTRACT

Intrastriatal implantation of genetically modified cells synthesizing nerve growth factor (NGF) constitutes one way to obtain a long-term supply of this neurotrophic factor and a neuronal protection against an excitotoxic lesion. We have investigated if NGF-loaded poly(d,l-lactide-co-glycolide) microspheres could represent an alternative to cell transplantations. These microspheres can be implanted stereotaxically and locally release the protein in a controlled and sustained way. In order to test this paradigm, the NGF release kinetics were characterized in vitro using radiolabeled NGF, immunoenzymatic assay, and PC-12 cells bioassay and then in vivo after implantation in the intact rat striatum. These microspheres were thus implanted into the rat striatum 7 days prior to infusing quinolinic acid. Control animals were either not treated or implanted with blank microspheres. The extent of the lesion and the survival of ChAT-, NADPH-d-, and DARPP-32-containing neurons were analyzed. In vitro studies showed that microspheres allowed a sustained release of bioactive NGF for at least 1 month. Microspheres implanted in the intact striatum still contained NGF after 2.5 months and they were totally degraded after 3 months. After quinolinic acid infusion, the lesion size in the group treated with NGF-releasing microspheres was reduced by 40% when compared with the control groups. A marked neuronal sparing was noted, principally concerning the cholinergic interneurons, but also neuropeptide Y/somatostatin interneurons and GABAergic striatofuge neurons. These results indicate that implantation of biodegradable NGF-releasing microspheres can be used to protect neurons from a local excitotoxic lesion and that this strategy may ultimately prove to be relevant for the treatment of various neurological diseases.


Subject(s)
Corpus Striatum/drug effects , Drug Delivery Systems , Nerve Growth Factor/pharmacology , Nerve Tissue Proteins , Neuroprotective Agents/pharmacology , Animals , Biodegradation, Environmental , Capsules , Choline O-Acetyltransferase/analysis , Corpus Striatum/pathology , Dopamine and cAMP-Regulated Phosphoprotein 32 , Enzyme-Linked Immunosorbent Assay , Female , Huntington Disease/drug therapy , Huntington Disease/pathology , Iodine Radioisotopes , Microspheres , NADPH Dehydrogenase/analysis , Neurons/drug effects , Neurons/enzymology , Neurotoxins/toxicity , PC12 Cells , Phosphoproteins/analysis , Quinolinic Acid/toxicity , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...