Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Am J Psychiatry ; 166(2): 206-15, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18829870

ABSTRACT

OBJECTIVE: The study of ethnically homogeneous populations may help to identify schizophrenia risk loci. The authors conducted a genomewide linkage scan for schizophrenia in an Indian population. METHOD: Participants were 441 individuals (262 affected probands and siblings) who were recruited primarily from one ethnically homogeneous group, the Tamil Brahmin caste, although individuals from other geographically proximal castes also participated. Genotyping of 124 affected sibling pair pedigrees was performed with 402 short tandem repeat polymorphisms. Linkage analyses were conducted using nonparametric exponential LOD (logarithm of the odds ratio for linkage) scores and parametric heterogeneity LOD scores. Parametric heterogeneity scores were calculated using simple dominant and recessive models, correcting for multiple statistics. The data were examined for evidence of consanguinity. Genomewide significance levels were determined using 10,000 gene dropping simulations. RESULTS: These findings revealed genomewide significant linkage to chromosome 1p31.1, through the use of both exponential and heterogeneity LOD scores, incorporating correction for multiple statistics and mild consanguinity. The estimated sibling recurrence risk associated with this putative locus was 1.95. Analysis for heterogeneity LOD scores also detected suggestive linkage to chromosomes 13q22.1 and 16q12.2. Using 117 tag single nucleotide polymorphisms (SNPs), family-based association analyses of phosphodiesterase 4B (PDE4B), the closest schizophrenia candidate gene, detected no convincing evidence of association, suggesting that the chromosome 1 peak represents a novel risk locus. CONCLUSIONS: This is the first study-to the authors' knowledge-to report significant linkage of schizophrenia to chromosome 1p31.1. Further investigation of this chromosome region in diverse populations is warranted to identify underlying sequence variants.


Subject(s)
Chromosome Mapping , Chromosomes, Human, Pair 1/genetics , Schizophrenia/genetics , Adult , Alleles , Consanguinity , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Female , Genotype , Humans , India , Lod Score , Male , Microsatellite Repeats/genetics , Middle Aged , Polymorphism, Single Nucleotide/genetics , Schizophrenia/diagnosis , Schizophrenia/ethnology
2.
Am J Psychiatry ; 165(4): 497-506, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18198266

ABSTRACT

OBJECTIVE: The authors carried out a genetic association study of 14 schizophrenia candidate genes (RGS4, DISC1, DTNBP1, STX7, TAAR6, PPP3CC, NRG1, DRD2, HTR2A, DAOA, AKT1, CHRNA7, COMT, and ARVCF). This study tested the hypothesis of association of schizophrenia with common single nucleotide polymorphisms (SNPs) in these genes using the largest sample to date that has been collected with uniform clinical methods and the most comprehensive set of SNPs in each gene. METHOD: The sample included 1,870 cases (schizophrenia and schizoaffective disorder) and 2,002 screened comparison subjects (i.e. controls), all of European ancestry, with ancestral outliers excluded based on analysis of ancestry-informative markers. The authors genotyped 789 SNPs, including tags for most common SNPs in each gene, SNPs previously reported as associated, and SNPs located in functional domains of genes such as promoters, coding exons (including nonsynonymous SNPs), 3' untranslated regions, and conserved noncoding sequences. After extensive data cleaning, 648 SNPs were analyzed for association of single SNPs and of haplotypes. RESULTS: Neither experiment-wide nor gene-wide statistical significance was observed in the primary single-SNP analyses or in secondary analyses of haplotypes or of imputed genotypes for additional common HapMap SNPs. Results in SNPs previously reported as associated with schizophrenia were consistent with chance expectation, and four functional polymorphisms in COMT, DRD2, and HTR2A did not produce nominally significant evidence to support previous evidence for association. CONCLUSIONS: It is unlikely that common SNPs in these genes account for a substantial proportion of the genetic risk for schizophrenia, although small effects cannot be ruled out.


Subject(s)
Genotype , Schizophrenia/genetics , White People/genetics , Adolescent , Adult , Catechol O-Methyltransferase/genetics , Catechol O-Methyltransferase/metabolism , Chromosome Mapping/statistics & numerical data , Female , Follow-Up Studies , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Haplotypes/genetics , Humans , Linkage Disequilibrium/genetics , Male , Polymorphism, Single Nucleotide , Psychotic Disorders/genetics , Psychotic Disorders/metabolism , Quality Control , Schizophrenia/metabolism
3.
Twin Res Hum Genet ; 9(4): 531-9, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16899160

ABSTRACT

Numerous studies have reported association between variants in the dystrobrevin binding protein 1 (dysbindin) gene (DTNBP1) and schizophrenia. However, the pattern of results is complex and to date, no specific risk marker or haplotype has been consistently identified. The number of single nucleotide polymorphisms (SNPs) tested in these studies has ranged from 5 to 20. We attempted to replicate previous findings by testing 16 SNPs in samples of 41 Australian pedigrees, 194 Australian cases and 180 controls, and 197 Indian pedigrees. No globally significant evidence for association was observed in any sample, despite power calculations indicating sufficient power to replicate several previous findings. Possible explanations for our results include sample differences in background linkage disequilibrium and/or risk allele effect size, the presence of multiple risk alleles upon different haplotypes, or the presence of a single risk allele upon multiple haplotypes. Some previous associations may also represent false positives. Examination of Caucasian HapMap phase II genotype data spanning the DTNBP1 region indicates upwards of 40 SNPs are required to satisfactorily assess all nonredundant variation within DTNBP1 and its potential regulatory regions for association with schizophrenia. More comprehensive studies in multiple samples will be required to determine whether specific DTNBP1 variants function as risk factors for schizophrenia.


Subject(s)
Alleles , Carrier Proteins/genetics , Genetic Predisposition to Disease , Linkage Disequilibrium , Polymorphism, Single Nucleotide , Schizophrenia/genetics , Australia , Case-Control Studies , Dysbindin , Dystrophin-Associated Proteins , Female , Haplotypes , Humans , India , Male , Risk Factors , White People
4.
Am J Hum Genet ; 78(2): 315-33, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16400611

ABSTRACT

We report the clinical characteristics of a schizophrenia sample of 409 pedigrees--263 of European ancestry (EA) and 146 of African American ancestry (AA)--together with the results of a genome scan (with a simple tandem repeat polymorphism interval of 9 cM) and follow-up fine mapping. A family was required to have a proband with schizophrenia (SZ) and one or more siblings of the proband with SZ or schizoaffective disorder. Linkage analyses included 403 independent full-sibling affected sibling pairs (ASPs) (279 EA and 124 AA) and 100 all-possible half-sibling ASPs (15 EA and 85 AA). Nonparametric multipoint linkage analysis of all families detected two regions with suggestive evidence of linkage at 8p23.3-q12 and 11p11.2-q22.3 (empirical Z likelihood-ratio score [Z(lr)] threshold >/=2.65) and, in exploratory analyses, two other regions at 4p16.1-p15.32 in AA families and at 5p14.3-q11.2 in EA families. The most significant linkage peak was in chromosome 8p; its signal was mainly driven by the EA families. Z(lr) scores >2.0 in 8p were observed from 30.7 cM to 61.7 cM (Center for Inherited Disease Research map locations). The maximum evidence in the full sample was a multipoint Z(lr) of 3.25 (equivalent Kong-Cox LOD of 2.30) near D8S1771 (at 52 cM); there appeared to be two peaks, both telomeric to neuregulin 1 (NRG1). There is a paracentric inversion common in EA individuals within this region, the effect of which on the linkage evidence remains unknown in this and in other previously analyzed samples. Fine mapping of 8p did not significantly alter the significance or length of the peak. We also performed fine mapping of 4p16.3-p15.2, 5p15.2-q13.3, 10p15.3-p14, 10q25.3-q26.3, and 11p13-q23.3. The highest increase in Z(lr) scores was observed for 5p14.1-q12.1, where the maximum Z(lr) increased from 2.77 initially to 3.80 after fine mapping in the EA families.


Subject(s)
Chromosomes, Human, Pair 11/genetics , Chromosomes, Human, Pair 8/genetics , Genetic Predisposition to Disease , Schizophrenia/genetics , Adolescent , Adult , Black or African American/genetics , Chromosome Mapping , Female , Genetic Linkage , Genome, Human , Humans , Male , Nerve Tissue Proteins/genetics , Neuregulin-1 , Pedigree , White People/genetics
5.
Am J Med Genet B Neuropsychiatr Genet ; 121B(1): 1-6, 2003 Aug 15.
Article in English | MEDLINE | ID: mdl-12898567

ABSTRACT

A single nucleotide polymorphism (TNF(-308A)) within the promoter region of the gene encoding tumor necrosis factor (TNF), has been significantly associated with schizophrenia in a study of Italian patients and control subjects Boin et al. [2001: Mol Psychiatry 6:79-82]. We have applied case-control analyses to examine TNF promoter haplotypes (containing TNF(-308) and two additional promoter variants: TNF(-376) and TNF(-238)) in four schizophrenia cohorts drawn from Australian, Indian Fijian, Indigenous Fijian, and Brahmin populations. In addition, we have applied the sibling transmission disequilibrium (STD) test to promoter haplotypes within 81 trios drawn from Australian Caucasian pedigrees with multiple schizophrenia cases, and 86 trios drawn from the Brahmin population of Tamil Nadu province in Southern India. Within each of these cohorts, we found no evidence of recombination between these tightly linked promoter variants, supporting previous studies which demonstrated that only a subset of the eight possible haplotypes exist. Of the four observed haplotypes, we and others have observed only one carries the TNF(-308A) variant allele. We report no significant differences in TNF promoter haplotype frequencies between the patient and control groups within each population, although the Indian Fijian cohort showed a trend towards reduced TNF(-308A) alleles amongst schizophrenia cases (P = 0.07). We found no evidence of bias in TNF promoter haplotype transmission to schizophrenia probands. Very similar results were obtained when only the TNF(-308) polymorphism was considered. Taken together, these data provide no support for the involvement of TNF promoter variants TNF(-308), TNF(-376), and TNF(-238) in schizophrenia susceptibility within four ethnically distinct cohorts.


Subject(s)
Haplotypes , Schizophrenia/genetics , Tumor Necrosis Factor-alpha/genetics , Australia , Fiji , Humans , Promoter Regions, Genetic
6.
Science ; 296(5568): 739-41, 2002 Apr 26.
Article in English | MEDLINE | ID: mdl-11976456

ABSTRACT

Reports of substantial evidence for genetic linkage of schizophrenia to chromosome 1q were evaluated by genotyping 16 DNA markers across 107 centimorgans of this chromosome in a multicenter sample of 779 informative schizophrenia pedigrees. No significant evidence was observed for such linkage, nor for heterogeneity in allele sharing among the eight individual samples. Separate analyses of European-origin families, recessive models of inheritance, and families with larger numbers of affected cases also failed to produce significant evidence for linkage. If schizophrenia susceptibility genes are present on chromosome 1q, their population-wide genetic effects are likely to be small.


Subject(s)
Chromosomes, Human, Pair 1/genetics , Genetic Linkage , Genetic Predisposition to Disease , Schizophrenia/genetics , Africa , Alleles , Australia , Canada , Europe , Female , Genes, Recessive , Genotype , Humans , Lod Score , Male , Microsatellite Repeats , Pedigree , Schizophrenia/ethnology , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...