Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cells Tissues Organs ; 200(3-4): 278-86, 2014.
Article in English | MEDLINE | ID: mdl-26278318

ABSTRACT

UNLABELLED: Clinical and experimental studies suggest that prenatal exposure to stress can impact the growth and development of offspring. The effect of prenatal exposure to constant light, applied as a chronic stressor, on endochondral ossification of the tibiae of 3-day-old and 15-day-old pups was histomorphometrically evaluated. Pregnant rats were divided into 2 groups: mothers chronically exposed to a 12:12-hour light/light cycle (LL) and control mothers maintained on a 12:12-hour light/dark cycle on days 10-20 of pregnancy. On postnatal days 3 and 15, the pups were weighed and euthanized. The tibiae were resected and histologically processed to obtain sections for hematoxylin and eosin staining (HE) and tartrate-resistant acid phosphatase (TRAP) histochemistry, in order to perform histomorphometric determinations. The data were statistically analyzed. A significant decrease in hypertrophic cartilage thickness was observed in the tibiae of the 3-day-old (LL: 0.134 ± 0.02 vs. CONTROLS: 0.209 ± 0.023 mm; p < 0.01) and 15-day-old (LL: 23.32 ± 3.98 vs. CONTROLS: 22.96 ± 1.93 mm; p < 0.05) prenatally stressed pups. The subchondral bone volume was significantly lower in the tibiae of the 3-day-old LL pups (38.83 ± 6.14%) than in the controls (62.83 ± 10.67%; p < 0.01). The decrease in subchondral bone volume and hypertrophic cartilage thickness shows that the normal growth process of the tibia is impaired in prenatally stressed pups.


Subject(s)
Light , Osteogenesis/radiation effects , Prenatal Exposure Delayed Effects/pathology , Tibia/pathology , Tibia/radiation effects , Acid Phosphatase/metabolism , Animals , Animals, Newborn , Body Weight/radiation effects , Cartilage/pathology , Cartilage/radiation effects , Female , Hypertrophy , Isoenzymes/metabolism , Organ Size/radiation effects , Pregnancy , Rats, Wistar , Tartrate-Resistant Acid Phosphatase , Tibia/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...