Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Evol ; 38(3): 952-967, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33031537

ABSTRACT

Sterol biosynthesis, primarily associated with eukaryotic kingdoms of life, occurs as an abbreviated pathway in the bacterium Methylococcus capsulatus. Sterol 14α-demethylation is an essential step in this pathway and is catalyzed by cytochrome P450 51 (CYP51). In M. capsulatus, the enzyme consists of the P450 domain naturally fused to a ferredoxin domain at the C-terminus (CYP51fx). The structure of M. capsulatus CYP51fx was solved to 2.7 Å resolution and is the first structure of a bacterial sterol biosynthetic enzyme. The structure contained one P450 molecule per asymmetric unit with no electron density seen for ferredoxin. We connect this with the requirement of P450 substrate binding in order to activate productive ferredoxin binding. Further, the structure of the P450 domain with bound detergent (which replaced the substrate upon crystallization) was solved to 2.4 Å resolution. Comparison of these two structures to the CYP51s from human, fungi, and protozoa reveals strict conservation of the overall protein architecture. However, the structure of an "orphan" P450 from nonsterol-producing Mycobacterium tuberculosis that also has CYP51 activity reveals marked differences, suggesting that loss of function in vivo might have led to alterations in the structural constraints. Our results are consistent with the idea that eukaryotic and bacterial CYP51s evolved from a common cenancestor and that early eukaryotes may have recruited CYP51 from a bacterial source. The idea is supported by bioinformatic analysis, revealing the presence of CYP51 genes in >1,000 bacteria from nine different phyla, >50 of them being natural CYP51fx fusion proteins.


Subject(s)
Evolution, Molecular , Methylococcus capsulatus/genetics , Sterol 14-Demethylase/genetics , Animals , Humans , Methylococcus capsulatus/enzymology , Protein Conformation , Sterol 14-Demethylase/chemistry
2.
Plant Biotechnol J ; 10(1): 12-9, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21554529

ABSTRACT

Different combinations of three rate-limiting enzymes in phytosterol biosynthesis, the Arabidopsis thaliana hydroxyl methylglutaryl CoA1 (HMGR1) catalytic subunit linked to either constitutive or seed-specific ß-conglycinin promoter, and the Glycine max sterol methyltransferase1 (SMT1) and sterol methyltransferase2-2 (SMT2-2) genes, under the control of seed-specific Glycinin-1 and Beta-phaseolin promoters, respectively, were engineered in soybean plants. Mature seeds of transgenic plants displayed modest increases in total sterol content, which points towards a tight control of phytosterol biosynthesis. However, in contrast to wild-type seeds that accumulated about 35% of the total sterol in the form of intermediates, in the engineered seeds driven by a seed-specific promoter, metabolic flux was directed to Δ(5) -24-alkyl sterol formation (99% of total sterol). The engineered effect of end-product sterol (sitosterol, campesterol, and stigmasterol) over-production in soybean seeds resulted in an approximately 30% increase in overall sitosterol synthesis, a desirable trait for oilseeds and human health. In contradistinction, increased accumulation of cycloartenol and 24(28)-methylencylartanol (55% of the total sterol) was detected in plants harbouring the constitutive t-HMGR1 gene, consistent with the previous studies. Our results support the possibility that metabolic flux of the phytosterol family pathway is differentially regulated in leaves and seeds.


Subject(s)
Glycine max/metabolism , Metabolic Engineering/methods , Phytosterols/metabolism , Quantitative Trait, Heritable , Blotting, Southern , Phytosterols/biosynthesis , Plants, Genetically Modified , Seeds/genetics , Seeds/metabolism , Glycine max/genetics , Transgenes/genetics
3.
Molecules ; 14(11): 4690-706, 2009 Nov 18.
Article in English | MEDLINE | ID: mdl-19924096

ABSTRACT

This article reviews the design and study, in our own laboratory and others, of new steroidal triterpenes with a modified lanosterol or cycloartenol frame. These compounds, along with a number of known analogs with the cholestane skeleton, have been evaluated as reversible or irreversible inhibitors of sterol C24-methyltransferase (SMT) from plants, fungi and protozoa. The SMT catalyzes the C24-methylation reaction involved with the introduction of the C24-methyl group of ergosterol and the C24-ethyl group of sitosterol, cholesterol surrogates that function as essential membrane inserts in many photosynthetic and non-photosynthetic eukaryotic organisms. Sterol side chains constructed with a nitrogen, sulfur, bromine or fluorine atom, altered to possess a methylene cyclopropane group, or elongated to include terminal double or triple bonds are shown to exhibit different in vitro activities toward the SMT which are mirrored in the inhibition potencies detected in the growth response of treated cultured human and plant cells or microbes. Several of the substrate-based analogs surveyed here appear to be taxaspecific compounds acting as mechanism-based inactivators of the SMT, a crucial enzyme not synthesized by animals. Possible mechanisms for the inactivation process and generation of novel products catalyzed by the variant SMTs are discussed.


Subject(s)
Ergosterol/biosynthesis , Methyltransferases/antagonists & inhibitors , Sitosterols/metabolism , Triterpenes/chemical synthesis , Triterpenes/pharmacology , Enzyme Activation/drug effects , Ergosterol/chemistry , Molecular Structure , Sitosterols/chemistry , Triterpenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...