Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Behav Neurosci ; 12: 108, 2018.
Article in English | MEDLINE | ID: mdl-29910714

ABSTRACT

Drug addiction is a disorder in which drug seeking persists despite aversive consequences. While it is well documented in animal models of drug sensitization that repeated drug exposure enhances positive incentive motivation for drug and natural reinforcers, its effect on negative incentive motivation, defined here as the motivation to avoid a cued aversive outcome, remains an open question. In the present study, we designed a novel active avoidance (AA) runway paradigm to assess the effects of repeated cocaine exposure on the motivation to avoid an aversive outcome. Cocaine and saline pre-exposed rats were first trained to perform a conditioned AA lever press response to prevent the occurrence of foot shock administrations. The rats were subsequently tested in a runway apparatus, wherein they were required to traverse the length of a straight alley maze to reach the lever and emit a conditioned AA response. Run times were measured as an indication of negative incentive motivation. Cocaine pre-exposed rats demonstrated longer latencies to emit the conditioned AA response but showed no differences in latency to initiate runway behavior, nor in their acquisition of the AA response compared to the saline pre-exposed controls. Subsequent testing in an elevated plus maze revealed no differences in the expression of anxiety in cocaine pre-exposed rats compared to saline pre-exposed controls. Our results indicate that prior repeated cocaine exposure attenuated cued negative incentive motivation, which suggests that drug addiction may be attributable to a decrease in motivation to avoid aversive consequences associated with drug use.

2.
Article in English | MEDLINE | ID: mdl-27565433

ABSTRACT

Tardive dyskinesia (TD), a potentially irreversible antipsychotic (AP)-related movement disorder, is a risk with all currently available antipsychotics. AP-induced vacuous chewing movements (VCMs) in rats, a preclinical model of TD, can be attenuated by antioxidant-based treatments although there is a shortage of well-designed studies. Lipoic acid (LA) represents a candidate antioxidant for the treatment of oxidative stress-related nervous system disorders; accordingly, its effects on AP-induced VCMs and striatal oxidative stress were examined. Rats treated with haloperidol decanoate (HAL; 21mg/kg every 3weeks, IM) for 12weeks were concurrently treated with LA (10 or 20mg/kg, PO). VCMs were assessed weekly by a blinded rater, and locomotor activity was evaluated as were striatal lipid peroxidation markers and serum HAL levels. VCMs were decreased by the lower dose (nonsignificant), whereas a significant increase was recorded with the higher dose of LA. HAL decreased locomotor activity and this was unaffected by LA. Striatal malondialdehyde (MDA) levels in HAL-treated rats were reduced by both LA doses, while 4-hydroxynonenal (4-HNE) levels were predictive of final VCM scores (averaged across weeks 10-12). Study limitations include differences between antipsychotics in terms of oxidative stress, LA dosing, choice of biomarkers for lipid peroxidation, and generalizability to TD in humans. Collectively, current preclinical evidence does not support a "protective" role for antioxidants in preventing TD or its progression, although clinical evidence offers limited evidence supporting such an approach.


Subject(s)
Antioxidants/therapeutic use , Antipsychotic Agents/toxicity , Haloperidol/toxicity , Mastication/drug effects , Tardive Dyskinesia/chemically induced , Tardive Dyskinesia/prevention & control , Thioctic Acid/therapeutic use , Aldehydes/metabolism , Analysis of Variance , Animals , Antipsychotic Agents/blood , Haloperidol/blood , Male , Malondialdehyde/metabolism , Rats , Rats, Sprague-Dawley , Thiobarbituric Acid Reactive Substances/metabolism , Thioctic Acid/toxicity
3.
Psychopharmacology (Berl) ; 233(14): 2629-53, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27251130

ABSTRACT

RATIONALE: So-called atypical antipsychotics (AAPs) are associated with varying levels of weight gain and associated metabolic disturbances, which in patients with serious mental illness (SMI) have been linked to non-compliance and poor functional outcomes. Mechanisms underlying AAP-induced metabolic abnormalities are only partially understood. Antipsychotic-induced weight gain may occur as a result of increases in food intake and/or changes in feeding. OBJECTIVE: In this review, we examine the available human and preclinical literature addressing AAP-related changes in feeding behavior, to determine whether changes in appetite and perturbations in regulation of food intake could be contributing factors to antipsychotic-induced weight gain. RESULTS: In general, human studies point to disruption by AAPs of feeding behaviors and food consumption. In rodents, increases in cumulative food intake are mainly observed in females; however, changes in feeding microstructure or motivational aspects of food intake appear to occur independent of sex. CONCLUSIONS: The findings from this review indicate that the varying levels of AAP-related weight gain reflect changes in both appetite and feeding behaviors, which differ by type of AAP. However, inconsistencies exist among the studies (both human and rodent) that may reflect considerable differences in study design and methodology. Future studies examining underlying mechanisms of antipsychotic-induced weight gain are recommended in order to develop strategies addressing the serious metabolic side effect of AAPs.


Subject(s)
Antipsychotic Agents/pharmacology , Feeding Behavior/drug effects , Weight Gain/drug effects , Animals , Appetite/drug effects , Eating/drug effects , Humans , Mice , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...