Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mod Pathol ; 15(3): 351-6, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11904348

ABSTRACT

Apart from its hormone responsiveness, little about the pathobiology of intravenous leiomyomatosis (IVL), a rare smooth muscle proliferation, is known. We investigated the cytogenetics and molecular biology of IVL in a 40-year-old female who presented with an abrupt onset of dyspnea. In addition to the intracaval tumor mass composed of histologically benign smooth muscle, four distinct retroperitoneal "fibroids" were cytogenetically investigated. An identical abnormal karyotype, 45,XX,der(14)t(12; 14)(q15;q24),-22, was observed in all five specimens. Fluorescence in situ hybridization revealed three copies of HMGIC (alias HMGA2), two on the normal chromosomes 12 at 12q15, as well as another on the der(14) in the breakpoint region, suggesting that the 12q breakpoint occurred 5' (centromeric) to HMGIC (HMGA2), as has been frequently observed in uterine leiomyoma. Such similarity in chromosomal rearrangements suggests that there may be a pathogenetic relationship between IVL and uterine leiomyomata with t(12;14). Skewed X inactivation was observed in each tumor sample, but not in the myometrium. In each tumor, the lower molecular weight allele of HUMARA was nonrandomly inactivated. This pattern of X inactivation is most consistent with origin from a single transformation event, and in this regard, IVL more closely resembles disseminated peritoneal leiomyomatosis than typical uterine leiomyomata.


Subject(s)
Leiomyomatosis/pathology , Muscle, Smooth, Vascular/pathology , Uterine Neoplasms/pathology , Uterus/blood supply , Vascular Diseases/pathology , Adult , Chromosome Banding , Clone Cells , DNA, Neoplasm/analysis , Dosage Compensation, Genetic , Female , High Mobility Group Proteins/analysis , Humans , In Situ Hybridization, Fluorescence , Karyotyping , Leiomyomatosis/genetics , Leiomyomatosis/surgery , Uterine Neoplasms/genetics , Uterine Neoplasms/surgery , Veins/pathology
2.
Genes Chromosomes Cancer ; 32(2): 172-6, 2001 Oct.
Article in English | MEDLINE | ID: mdl-11550285

ABSTRACT

Benign mesenchymal neoplasms associated with rearrangements of the DNA architectural factor gene HMGIC on chromosome 12 include lipomas, uterine leiomyomata, pulmonary chondroid hamartomas, endometrial polyps, salivary gland pleomorphic adenomas, and breast fibroadenomas. Although HMGIC also has been implicated in the pathobiology of aggressive angiomyxoma of the vulva, the molecular mechanisms pertaining to this neoplasm are unclear. Tissue from a recurrent aggressive angiomyxoma was investigated by cytogenetic and expression analysis for HMGIC and HMGIY. The trypsin-Giemsa-banded karyotype showed a clonal translocation between chromosomes 8 and 12 [46,XX,t(8;12)(p12;q15)]. Fluorescence in situ hybridization (FISH) analysis with whole chromosome paint probes for chromosomes 8 and 12 excluded cryptic involvement of other chromosomes. The chromosome 12 breakpoint was mapped with two-color FISH analysis using cosmid probes at the 5' and 3' termini of HMGIC. Both cosmid probes showed hybridization to the normal chromosome 12 and the der(12) chromosome, indicating that the breakpoint was 3' (telomeric) to the gene. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis revealed HMGIC expression in the tumor, and immunohistochemistry localized HMGIC expression to the tumor's spindle cells. Like numerous benign mesenchymal tumors, this locally aggressive tumor is associated with rearrangements near or within HMGIC, but chimeric gene formation was not required for tumorigenesis. Inappropriate expression of this DNA binding protein, however, may be important in the pathobiology of this tumor. Understanding the pathogenetic mechanism may also be helpful in developing new diagnostic tools for identifying residual disease.


Subject(s)
Chromosomes, Human, Pair 12/genetics , Chromosomes, Human, Pair 8/genetics , Gene Expression Regulation, Neoplastic/genetics , HMGA2 Protein/genetics , Myxoma/genetics , Neoplasm Proteins/genetics , Translocation, Genetic/genetics , Vulvar Neoplasms/genetics , Adult , Female , Humans , Myxoma/pathology , Vulvar Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...