Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Med Chem Lett ; 14(9): 1179-1187, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37736184

ABSTRACT

Cyclin-dependent kinases (CDKs) are key regulators of the cell cycle and are frequently altered in cancer cells, thereby leading to uncontrolled proliferation. In this context, CDK2 has emerged as an appealing target for anticancer drug development. Herein, we describe the discovery of a series of selective small molecule inhibitors of CDK2 beginning with historical compounds from our ERK2 program (e.g., compound 6). Structure-based drug design led to the potent and selective tool compound 32, where excellent selectivity against ERK2 and CDK4 was achieved by filling the lipophilic DFG-1 pocket and targeting interactions with CDK2-specific lower hinge binding residues, respectively. Compound 32 demonstrated 112% tumor growth inhibition in mice bearing OVCAR3 tumors with 50 mg/kg bis in die (BID) oral dosing.

2.
J Med Chem ; 65(21): 14721-14739, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36279149

ABSTRACT

Inappropriate activation of the NLRP3 inflammasome has been implicated in multiple inflammatory and autoimmune diseases. Herein, we aimed to develop novel NLRP3 inhibitors that could minimize the risk of drug-induced liver injury. Lipophilic ligand efficiency was used as a guiding metric to identify a series of 6,7-dihydro-5H-pyrazolo[5,1-b][1,3]oxazinesulfonylureas. A leading compound from this series was advanced into safety studies in cynomolgus monkeys, and renal toxicity, due to compound precipitation, was observed. To overcome this obstacle, we focused on improving the solubility of our compounds, specifically by introducing basic amine substituents into the scaffold. This led to the identification of GDC-2394, a potent and selective NLRP3 inhibitor, with an in vitro and in vivo safety profile suitable for advancement into human clinical trials.


Subject(s)
NLR Family, Pyrin Domain-Containing 3 Protein , Oxazines , Animals , Humans , Oxazines/pharmacology , Oxazines/therapeutic use , Inflammasomes , Sulfonamides/pharmacology , Macaca fascicularis
3.
AAPS PharmSciTech ; 23(1): 28, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34931259

ABSTRACT

Spray-drying dispersion (SDD) is a well-established manufacturing technique used to prepare amorphous solid dispersions (ASDs), allowing for poorly soluble drugs to have improved bioavailability. However, the process of spray-drying with multiple factors and numerous variables can lead to a lengthy development timeline with intense resource requirements, which becomes the main obstacle limiting spray-drying development at the preclinical stage. The purpose of this work was to identify optimized preset parameters for spray-drying to support the early development of ASDs suitable for most circumstances rather than individual optimization. First, a mini-DoE (Design of Experiment) study was designed to evaluate the critical interplay of two key variables for spray-drying using a BUCHI B-290 mini spray dryer: solid load and atomizing spray gas flow. The critical quality attributes (CQAs) of the ASDs, including yield, particle size, morphology, and in vitro release profile, were taken into account to identify the impact of the key variables. The mini-DoE results indicated that a 5% solid load (w/v %) and 35 mm height atomizing spray gas flow were the most optimized parameters. These predefined values were further verified using different formulation compositions, including various polymers (Eudragit L100-55, HPMCAS-MF, PVAP, and PVP-VA64) and drugs (G-F, GEN-A, Indomethacin, and Griseofulvin), a range of drug loading (10 to 40%), and scale (200 mg to 200 g). Using these predefined parameters, all ASD formulations resulted in good yields as well as consistent particle size distribution. This was despite the differences in the formulations, making this a valuable and rapid approach ideal for early development. This strategy of leveraging the preset spray-drying parameters was able to successfully translate into a reproducible and efficient spray-drying platform while also saving material and reducing developmental timelines in early-stage formulation development.

4.
JAMA Oncol ; 7(9): 1343-1350, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34236401

ABSTRACT

IMPORTANCE: Many cancer subtypes, including KIT-mutant gastrointestinal stromal tumors (GISTs), are driven by activating mutations in tyrosine kinases and may initially respond to kinase inhibitors but frequently relapse owing to outgrowth of heterogeneous subclones with resistance mutations. KIT inhibitors commonly used to treat GIST (eg, imatinib and sunitinib) are inactive-state (type II) inhibitors. OBJECTIVE: To assess whether combining a type II KIT inhibitor with a conformation-complementary, active-state (type I) KIT inhibitor is associated with broad mutation coverage and global disease control. DESIGN, SETTING, AND PARTICIPANTS: A highly selective type I inhibitor of KIT, PLX9486, was tested in a 2-part phase 1b/2a trial. Part 1 (dose escalation) evaluated PLX9486 monotherapy in patients with solid tumors. Part 2e (extension) evaluated PLX9486-sunitinib combination in patients with GIST. Patients were enrolled from March 2015 through February 2019; data analysis was performed from May 2020 through July 2020. INTERVENTIONS: Participants received 250, 350, 500, and 1000 mg of PLX9486 alone (part 1) or 500 and 1000 mg of PLX9486 together with 25 or 37.5 mg of sunitinib (part 2e) continuously in 28-day dosing cycles until disease progression, treatment discontinuation, or withdrawal. MAIN OUTCOMES AND MEASURES: Pharmacokinetics, safety, and tumor responses were assessed. Clinical efficacy end points (progression-free survival and clinical benefit rate) were supplemented with longitudinal monitoring of KIT mutations in circulating tumor DNA. RESULTS: A total of 39 PLX9486-naive patients (median age, 57 years [range, 39-79 years]; 22 men [56.4%]; 35 [89.7%] with refractory GIST) were enrolled in the dose escalation and extension parts. The recommended phase 2 dose of PLX9486 was 1000 mg daily. At this dose, PLX9486 could be safely combined with 25 or 37.5 mg daily of sunitinib continuously. Patients with GIST who received PLX9486 at a dose of 500 mg or less, at the recommended phase 2 dose, and with sunitinib had median (95% CI) progression-free survivals of 1.74 (1.54-1.84), 5.75 (0.99-11.0), and 12.1 (1.34-NA) months and clinical benefit rates (95% CI) of 14% (0%-58%), 50% (21%-79%), and 80% (52%-96%), respectively. CONCLUSIONS AND RELEVANCE: In this phase 1b/2a nonrandomized clinical trial, type I and type II KIT inhibitors PLX9486 and sunitinib were safely coadministered at the recommended dose of both single agents in patients with refractory GIST. Results suggest that cotargeting 2 complementary conformational states of the same kinase was associated with clinical benefit with an acceptable safety profile. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02401815.


Subject(s)
Gastrointestinal Stromal Tumors , Imatinib Mesylate , Protein Kinase Inhibitors , Sunitinib , Gastrointestinal Stromal Tumors/drug therapy , Gastrointestinal Stromal Tumors/genetics , Gastrointestinal Stromal Tumors/pathology , Humans , Imatinib Mesylate/adverse effects , Male , Middle Aged , Mutation , Neoplasm Recurrence, Local/drug therapy , Protein Kinase Inhibitors/adverse effects , Sunitinib/adverse effects
5.
Nat Commun ; 11(1): 5463, 2020 10 29.
Article in English | MEDLINE | ID: mdl-33122628

ABSTRACT

Metastatic melanoma remains an incurable disease for many patients due to the limited success of targeted and immunotherapies. BRAF and MEK inhibitors reduce metastatic burden for patients with melanomas harboring BRAF mutations; however, most eventually relapse due to acquired resistance. Here, we demonstrate that ABL1/2 kinase activities and/or expression are potentiated in cell lines and patient samples following resistance, and ABL1/2 drive BRAF and BRAF/MEK inhibitor resistance by inducing reactivation of MEK/ERK/MYC signaling. Silencing/inhibiting ABL1/2 blocks pathway reactivation, and resensitizes resistant cells to BRAF/MEK inhibitors, whereas expression of constitutively active ABL1/2 is sufficient to promote resistance. Significantly, nilotinib (2nd generation ABL1/2 inhibitor) reverses resistance, in vivo, causing prolonged regression of resistant tumors, and also, prevents BRAFi/MEKi resistance from developing in the first place. These data indicate that repurposing the FDA-approved leukemia drug, nilotinib, may be effective for prolonging survival for patients harboring BRAF-mutant melanomas.


Subject(s)
Drug Resistance, Neoplasm/genetics , Melanoma/drug therapy , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Cell Line, Tumor , Humans , MAP Kinase Signaling System/drug effects , Melanoma/genetics , Mitogen-Activated Protein Kinase Kinases/drug effects , Mitogen-Activated Protein Kinase Kinases/metabolism , Mutation/drug effects , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins c-abl/genetics , Proto-Oncogene Proteins c-abl/metabolism
6.
Nat Commun ; 10(1): 3758, 2019 08 21.
Article in English | MEDLINE | ID: mdl-31434879

ABSTRACT

Many risk genes for the development of Alzheimer's disease (AD) are exclusively or highly expressed in myeloid cells. Microglia are dependent on colony-stimulating factor 1 receptor (CSF1R) signaling for their survival. We designed and synthesized a highly selective brain-penetrant CSF1R inhibitor (PLX5622) allowing for extended and specific microglial elimination, preceding and during pathology development. We find that in the 5xFAD mouse model of AD, plaques fail to form in the parenchymal space following microglial depletion, except in areas containing surviving microglia. Instead, Aß deposits in cortical blood vessels reminiscent of cerebral amyloid angiopathy. Altered gene expression in the 5xFAD hippocampus is also reversed by the absence of microglia. Transcriptional analyses of the residual plaque-forming microglia show they exhibit a disease-associated microglia profile. Collectively, we describe the structure, formulation, and efficacy of PLX5622, which allows for sustained microglial depletion and identify roles of microglia in initiating plaque pathogenesis.


Subject(s)
Alzheimer Disease/metabolism , Microglia/metabolism , Organic Chemicals/pharmacology , Plaque, Amyloid/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Alzheimer Disease/genetics , Animals , Behavior, Animal , Brain/metabolism , Disease Models, Animal , Gene Expression Regulation , Hippocampus/metabolism , Humans , Memory , Mice , Mice, Transgenic , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Transcriptome
7.
Clin Exp Med ; 19(2): 201-210, 2019 May.
Article in English | MEDLINE | ID: mdl-30523507

ABSTRACT

The purpose of the present study was to investigate the in vitro and in vivo activity of PLX9486, a tyrosine kinase inhibitor (TKI) targeting both primary KIT exon 9 and 11 and secondary exon 17 and 18 mutations in gastrointestinal stromal tumors (GISTs). Imatinib, a potent inhibitor of mutated KIT, has revolutionized the clinical management of advanced, metastatic GIST. However, secondary resistance develops mainly through acquired mutations in KIT exons 13/14 or exons 17/18. Second-line sunitinib potently inhibits KIT exon 13/14 mutants but is ineffective against exon 17 mutations. In our study, PLX9486 demonstrated in vitro nanomolar potency in inhibiting the growth and KIT phosphorylation of engineered BaF3 cells transformed with KIT exon 17 mutations (p.D816V) and with the double KIT exon 11/17 mutations (p.V560G/D816V). The in vivo efficacy of PLX9486 was evaluated using two imatinib-resistant GIST patient-derived xenograft (PDX) models. In UZLX-GIST9 (KIT: p.P577del;W557LfsX5;D820G), PLX9486 100 mg/kg/day resulted in significant inhibition of proliferation. Pharmacodynamic analysis showed a pronounced reduction in mitogen-activated protein kinase (MAPK) activation and other downstream effects of the KIT signaling pathway but no significant effect on KIT Y703 and Y719 phosphorylation. Similarly, in MRL-GIST1 (KIT: p.W557_K558del;Y823D) PLX9486 treatment led to significant tumor regression and strong inhibition of MAPK activation. Interestingly, the inhibitory effect on MAPK activation was evident even after a single dose of PLX9486. In conclusion, PLX9486 showed anti-tumor efficacy in patient-derived imatinib-resistant GIST xenograft models, mainly through inhibition of KIT signaling. These preclinical efficacy data encourage further testing of PLX9486 in the clinical setting.


Subject(s)
Antineoplastic Agents/administration & dosage , Enzyme Inhibitors/administration & dosage , Gastrointestinal Stromal Tumors/drug therapy , Gastrointestinal Stromal Tumors/pathology , Mutant Proteins/genetics , Protein-Tyrosine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins c-kit/genetics , Animals , Disease Models, Animal , Drug Evaluation, Preclinical , Heterografts , Humans , Mice , Mutant Proteins/metabolism , Neoplasm Transplantation , Proto-Oncogene Proteins c-kit/metabolism , Treatment Outcome
8.
Cancer Discov ; 8(4): 458-477, 2018 04.
Article in English | MEDLINE | ID: mdl-29386193

ABSTRACT

Bromodomain and extra-terminal (BET) family proteins are key regulators of gene expression in cancer. Herein, we utilize BRD4 profiling to identify critical pathways involved in pathogenesis of chronic lymphocytic leukemia (CLL). BRD4 is overexpressed in CLL and is enriched proximal to genes upregulated or de novo expressed in CLL with known functions in disease pathogenesis and progression. These genes, including key members of the B-cell receptor (BCR) signaling pathway, provide a rationale for this therapeutic approach to identify new targets in alternative types of cancer. Additionally, we describe PLX51107, a structurally distinct BET inhibitor with novel in vitro and in vivo pharmacologic properties that emulates or exceeds the efficacy of BCR signaling agents in preclinical models of CLL. Herein, the discovery of the involvement of BRD4 in the core CLL transcriptional program provides a compelling rationale for clinical investigation of PLX51107 as epigenetic therapy in CLL and application of BRD4 profiling in other cancers.Significance: To date, functional studies of BRD4 in CLL are lacking. Through integrated genomic, functional, and pharmacologic analyses, we uncover the existence of BRD4-regulated core CLL transcriptional programs and present preclinical proof-of-concept studies validating BET inhibition as an epigenetic approach to target BCR signaling in CLL. Cancer Discov; 8(4); 458-77. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 371.


Subject(s)
Gene Expression Regulation, Leukemic , Isoxazoles/therapeutic use , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Nuclear Proteins/genetics , Pyridines/therapeutic use , Pyrroles/therapeutic use , Signal Transduction , Transcription Factors/genetics , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Cycle Proteins , Cell Line, Tumor , Cell Proliferation , Gene Expression Profiling , Humans , Isoxazoles/pharmacology , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/physiopathology , Mice , Mice, SCID , Nuclear Proteins/metabolism , Pyridines/pharmacology , Pyrroles/pharmacology , Transcription Factors/metabolism , Xenograft Model Antitumor Assays
9.
Nature ; 526(7574): 583-6, 2015 Oct 22.
Article in English | MEDLINE | ID: mdl-26466569

ABSTRACT

Oncogenic activation of BRAF fuels cancer growth by constitutively promoting RAS-independent mitogen-activated protein kinase (MAPK) pathway signalling. Accordingly, RAF inhibitors have brought substantially improved personalized treatment of metastatic melanoma. However, these targeted agents have also revealed an unexpected consequence: stimulated growth of certain cancers. Structurally diverse ATP-competitive RAF inhibitors can either inhibit or paradoxically activate the MAPK pathway, depending whether activation is by BRAF mutation or by an upstream event, such as RAS mutation or receptor tyrosine kinase activation. Here we have identified next-generation RAF inhibitors (dubbed 'paradox breakers') that suppress mutant BRAF cells without activating the MAPK pathway in cells bearing upstream activation. In cells that express the same HRAS mutation prevalent in squamous tumours from patients treated with RAF inhibitors, the first-generation RAF inhibitor vemurafenib stimulated in vitro and in vivo growth and induced expression of MAPK pathway response genes; by contrast the paradox breakers PLX7904 and PLX8394 had no effect. Paradox breakers also overcame several known mechanisms of resistance to first-generation RAF inhibitors. Dissociating MAPK pathway inhibition from paradoxical activation might yield both improved safety and more durable efficacy than first-generation RAF inhibitors, a concept currently undergoing human clinical evaluation with PLX8394.


Subject(s)
MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Animals , Cell Line, Tumor , Enzyme Activation/drug effects , Female , Genes, ras/genetics , Heterocyclic Compounds, 2-Ring/adverse effects , Heterocyclic Compounds, 2-Ring/pharmacology , Humans , Indoles/adverse effects , Indoles/pharmacology , MAP Kinase Signaling System/genetics , Mice , Models, Biological , Mutation/genetics , Protein Kinase Inhibitors/adverse effects , Proto-Oncogene Proteins B-raf/genetics , Sulfonamides/adverse effects , Sulfonamides/pharmacology , Vemurafenib
10.
Proc Natl Acad Sci U S A ; 110(14): 5689-94, 2013 Apr 02.
Article in English | MEDLINE | ID: mdl-23493555

ABSTRACT

Inflammation and cancer, two therapeutic areas historically addressed by separate drug discovery efforts, are now coupled in treatment approaches by a growing understanding of the dynamic molecular dialogues between immune and cancer cells. Agents that target specific compartments of the immune system, therefore, not only bring new disease modifying modalities to inflammatory diseases, but also offer a new avenue to cancer therapy by disrupting immune components of the microenvironment that foster tumor growth, progression, immune evasion, and treatment resistance. McDonough feline sarcoma viral (v-fms) oncogene homolog (FMS) and v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT) are two hematopoietic cell surface receptors that regulate the development and function of macrophages and mast cells, respectively. We disclose a highly specific dual FMS and KIT kinase inhibitor developed from a multifaceted chemical scaffold. As expected, this inhibitor blocks the activation of macrophages, osteoclasts, and mast cells controlled by these two receptors. More importantly, the dual FMS and KIT inhibition profile has translated into a combination of benefits in preclinical disease models of inflammation and cancer.


Subject(s)
Aminopyridines/pharmacology , Inflammation/drug therapy , Models, Molecular , Neoplasm Metastasis/drug therapy , Oncogene Protein gp140(v-fms)/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-kit/antagonists & inhibitors , Pyrroles/pharmacology , Aminopyridines/chemical synthesis , Aminopyridines/chemistry , Animals , Cell Survival/drug effects , Chromatography, Affinity , Crystallization , Escherichia coli , Human Umbilical Vein Endothelial Cells , Humans , Indoles , Macrophages/drug effects , Mast Cells/drug effects , Molecular Structure , Mutation, Missense/genetics , Oncogene Protein gp140(v-fms)/chemistry , Oncogene Protein gp140(v-fms)/genetics , Osteoclasts/drug effects , Protein Conformation , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-kit/chemistry , Proto-Oncogene Proteins c-kit/genetics , Pyrroles/chemical synthesis , Pyrroles/chemistry , Sf9 Cells , Spodoptera
SELECTION OF CITATIONS
SEARCH DETAIL
...