Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 58(25): 10932-10940, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38865602

ABSTRACT

Chronic wasting disease (CWD) is a contagious prion disease that affects cervids in North America, Northern Europe, and South Korea. CWD is spread through direct and indirect horizontal transmission, with both clinical and preclinical animals shedding CWD prions in saliva, urine, and feces. CWD particles can persist in the environment for years, and soils may pose a risk for transmission to susceptible animals. Our study presents a sensitive method for detecting prions in the environmental samples of prairie soils. Soils were collected from CWD-endemic regions with high (Saskatchewan, Canada) and low (North Dakota, USA) CWD prevalence. Heat extraction with SDS-buffer, a serial protein misfolding cyclic amplification assay coupled with a real-time quaking-induced conversion assay was used to detect the presence of CWD prions in soils. In the prairie area of South Saskatchewan where the CWD prevalence rate in male mule deer is greater than 70%, 75% of the soil samples tested were positive, while in the low-prevalence prairie region of North Dakota (11% prevalence in male mule deer), none of the soils contained prion seeding activity. Soil-bound CWD prion detection has the potential to improve our understanding of the environmental spread of CWD, benefiting both surveillance and mitigation approaches.


Subject(s)
Deer , Prions , Soil , Wasting Disease, Chronic , Wasting Disease, Chronic/epidemiology , Animals , Soil/chemistry , North Dakota/epidemiology , Saskatchewan/epidemiology , Male , Endemic Diseases
2.
Neuroscientist ; : 10738584241251828, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38742621

ABSTRACT

The discovery of cerebral amyloid angiopathy (CAA) is frequently attributed to Dr. Gustav Oppenheim-a man who has been largely passed over in history. Oppenheim's clinical and neuropathologic research covered a variety of disorders, but his name is best known for his work on senile dementia and CAA. Although Oppenheim was in fact not the first to discover CAA, his neuropathologic observations and inferences on neurodegenerative disease proved to be remarkably faithful to our modern understanding of neurodegenerative diseases. As a neurologist, he served in the First World War and was later subjected to religious persecutions in the leadup to the Holocaust but was not fortunate enough to emigrate before his death. The life, social impact, and previously overlooked contributions to science and medicine by Oppenheim are detailed.

3.
Prion ; 17(1): 7-15, 2023 12.
Article in English | MEDLINE | ID: mdl-36654484

ABSTRACT

Eighteenth-century England witnessed the emergence of two neurological diseases in animals. Scrapie, a transmissible spongiform encephalopathy, is a fatal neurodegenerative disease of sheep and goats that appears in classical and atypical forms. Reports of classical scrapie in continental Europe with described symptoms date back to 1750 in what is now western Poland. However, two major outbreaks of scrapie appeared in England prior to the 1800s. References to a sheep disease with a resemblance to scrapie first appear in Southwestern England between 1693 and 1722 and in the East Midlands between 1693 and 1706. Concurrent with the descriptions of scrapie in sheep was a neurological disease of deer first appearing in the East of England. Two 18th-century writers remarked on the symptomatic similarities between the sheep and deer neurological diseases. Multiple outbreaks of the unknown deer disease existing as early as 1772 are examined and are identified as rabies.


Subject(s)
Deer , Neurodegenerative Diseases , Prion Diseases , Rabies , Scrapie , Animals , Sheep , Scrapie/epidemiology , Rabies/epidemiology , Rabies/veterinary , Prion Diseases/veterinary , Goats
4.
PLoS One ; 17(10): e0275375, 2022.
Article in English | MEDLINE | ID: mdl-36190981

ABSTRACT

Chronic wasting disease (CWD) is a geographically expanding, fatal neurodegenerative disease in cervids. The disease can be transmitted directly (animal-animal) or indirectly via infectious prions shed into the environment. The precise mechanisms of indirect CWD transmission are unclear but known sources of the infectious prions that contaminate the environment include saliva, urine and feces. We have previously identified PrPC expression in deer interdigital glands, sac-like exocrine structures located between the digits of the hooves. In this study, we assayed for CWD prions within the interdigital glands of CWD infected deer to determine if they could serve as a source of prion shedding and potentially contribute to CWD transmission. Immunohistochemical analysis of interdigital glands from a CWD-infected female mule deer identified disease-associated PrPCWD within clusters of infiltrating leukocytes adjacent to sudoriferous and sebaceous glands, and within the acrosyringeal epidermis of a sudoriferous gland tubule. Proteinase K-resistant PrPCWD material was amplified by serial protein misfolding cyclic amplification (sPMCA) from soil retrieved from between the hoof digits of a clinically affected mule deer. Blinded testing of interdigital glands from 11 mule deer by real-time quake-induced conversion (RT-QuIC) accurately identified CWD-infected animals. The data described suggests that interdigital glands may play a role in the dissemination of CWD prions into the environment, warranting future investigation.


Subject(s)
Deer , Neurodegenerative Diseases , Prions , Wasting Disease, Chronic , Animals , Deer/metabolism , Endopeptidase K/metabolism , Equidae/metabolism , Female , Prions/metabolism , Soil
5.
Prion ; 16(1): 40-57, 2022 12.
Article in English | MEDLINE | ID: mdl-35634740

ABSTRACT

Chronic wasting disease (CWD) is a contagious and fatal transmissible spongiform encephalopathy affecting species of the cervidae family. CWD has an expanding geographic range and complex, poorly understood transmission mechanics. CWD is disproportionately prevalent in wild male mule deer and male white-tailed deer. Sex and species influences on CWD prevalence have been hypothesized to be related to animal behaviours that involve deer facial and body exocrine glands. Understanding CWD transmission potential requires a foundational knowledge of the cellular prion protein (PrPC) in glands associated with cervid behaviours. In this study, we characterized the presence and distribution of PrPC in six integumentary and two non-integumentary tissues of hunter-harvested mule deer (Odocoileus hemionus) and white-tailed deer (O. virginianus). We report that white-tailed deer expressed significantly more PrPC than their mule deer in the parotid, metatarsal, and interdigital glands. Females expressed more PrPC than males in the forehead and preorbital glands. The distribution of PrPC within the integumentary exocrine glands of the face and legs were localized to glandular cells, hair follicles, epidermis, and immune cell infiltrates. All tissues examined expressed sufficient quantities of PrPC to serve as possible sites of prion initial infection, propagation, and shedding.


Subject(s)
Deer , Prions , Vomeronasal Organ , Wasting Disease, Chronic , Animals , Deer/metabolism , Equidae/metabolism , Female , Male , Prion Proteins , Prions/metabolism , Scent Glands/metabolism , Vomeronasal Organ/metabolism , Wasting Disease, Chronic/metabolism
6.
BMC Genomics ; 16: 682, 2015 Sep 05.
Article in English | MEDLINE | ID: mdl-26341492

ABSTRACT

BACKGROUND: Prions diseases are fatal neurodegenerative diseases of mammals. While the molecular responses to prion infection have been extensively characterized in the laboratory mouse, little is known in other rodents. To explore these responses and make comparisons, we generated a prion disease in the laboratory rat by successive passage beginning with mouse RML prions. RESULTS: We describe the accumulation of rat prions, associated pathology and the transcriptional impact throughout the disease course. Comparative transcriptional profiling between laboratory mice and rats suggests that similar molecular and cellular processes are unfolding in response to prion infection. At the level of individual transcripts, however, variability exists between mice and rats and many genes deregulated by prion infection in mice are not affected in rats. CONCLUSION: Our findings detail the molecular responses to prion disease in the rat and highlight the usefulness of comparative approaches to understanding neurodegeneration and prion diseases in particular.


Subject(s)
Gene Expression Regulation , Prion Diseases/genetics , Transcriptome , Animals , Disease Models, Animal , Gene Expression Profiling , Mice , PrPC Proteins/genetics , PrPC Proteins/metabolism , Prion Diseases/metabolism , Prion Diseases/pathology , Prions/genetics , Prions/metabolism , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...