Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36332489

ABSTRACT

Parasitic nematode infections cause an enormous global burden to both humans and livestock. Resistance to the limited arsenal of anthelmintic drugs used to combat these infections is widespread, including benzimidazole (BZ) compounds. Previous studies using the free-living nematode Caenorhabditis elegans to model parasitic nematode resistance have shown that loss-of-function mutations in the beta-tubulin gene ben-1 confer resistance to BZ drugs. However, the mechanism of resistance and the tissue-specific susceptibility are not well known in any nematode species. To identify in which tissue(s) ben-1 function underlies BZ susceptibility, transgenic strains that express ben-1 in different tissues, including hypodermis, muscles, neurons, intestine, and ubiquitous expression were generated. High-throughput fitness assays were performed to measure and compare the quantitative responses to BZ compounds among different transgenic lines. Significant BZ susceptibility was observed in animals expressing ben-1 in neurons, comparable to expression using the ben-1 promoter. This result suggests that ben-1 function in neurons underlies susceptibility to BZ. Subsetting neuronal expression of ben-1 based on the neurotransmitter system further restricted ben-1 function in cholinergic neurons to cause BZ susceptibility. These results better inform our current understanding of the cellular mode of action of BZs and also suggest additional treatments that might potentiate the effects of BZs in neurons.


Subject(s)
Anthelmintics , Nematoda , Animals , Humans , Tubulin/genetics , Caenorhabditis elegans , Drug Resistance/genetics , Anthelmintics/pharmacology , Anthelmintics/therapeutic use
2.
Bioinformatics ; 37(23): 4405-4413, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34175927

ABSTRACT

MOTIVATION: The circadian rhythm drives the oscillatory expression of thousands of genes across all tissues. The recent revolution in high-throughput transcriptomics, coupled with the significant implications of the circadian clock for human health, has sparked an interest in circadian profiling studies to discover genes under circadian control. RESULT: We present TimeCycle: a topology-based rhythm detection method designed to identify cycling transcripts. For a given time-series, the method reconstructs the state space using time-delay embedding, a data transformation technique from dynamical systems theory. In the embedded space, Takens' theorem proves that the dynamics of a rhythmic signal will exhibit circular patterns. The degree of circularity of the embedding is calculated as a persistence score using persistent homology, an algebraic method for discerning the topological features of data. By comparing the persistence scores to a bootstrapped null distribution, cycling genes are identified. Results in both synthetic and biological data highlight TimeCycle's ability to identify cycling genes across a range of sampling schemes, number of replicates and missing data. Comparison to competing methods highlights their relative strengths, providing guidance as to the optimal choice of cycling detection method. AVAILABILITYAND IMPLEMENTATION: A fully documented open-source R package implementing TimeCycle is available at: https://nesscoder.github.io/TimeCycle/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Circadian Clocks , Circadian Rhythm , Humans , Circadian Rhythm/genetics , Circadian Clocks/genetics , Gene Expression Profiling/methods , Time Factors
3.
Science ; 372(6539)2021 04 16.
Article in English | MEDLINE | ID: mdl-33859007

ABSTRACT

Ray et al (Reports, 14 February 2020, p. 800) report apparent transcriptional circadian rhythms in mouse tissues lacking the core clock component BMAL1. To better understand these surprising results, we reanalyzed the associated data. We were unable to reproduce the original findings, nor could we identify reliably cycling genes. We conclude that there is insufficient evidence to support circadian transcriptional rhythms in the absence of Bmal1.


Subject(s)
ARNTL Transcription Factors , Circadian Rhythm , ARNTL Transcription Factors/genetics , Animals , Circadian Rhythm/genetics , Mice
4.
J Biol Rhythms ; 35(5): 439-451, 2020 10.
Article in English | MEDLINE | ID: mdl-32613882

ABSTRACT

The circadian rhythm drives the oscillatory expression of thousands of genes across all tissues, coordinating physiological processes. The effect of this rhythm on health has generated increasing interest in discovering genes under circadian control by searching for periodic patterns in transcriptomic time-series experiments. While algorithms for detecting cycling transcripts have advanced, there remains little guidance quantifying the effect of experimental design and analysis choices on cycling detection accuracy. We present TimeTrial, a user-friendly benchmarking framework using both real and synthetic data to investigate cycle detection algorithms' performance and improve circadian experimental design. Results show that the optimal choice of analysis method depends on the sampling scheme, noise level, and shape of the waveform of interest and provides guidance on the impact of sampling frequency and duration on cycling detection accuracy. The TimeTrial software is freely available for download and may also be accessed through a web interface. By supplying a tool to vary and optimize experimental design considerations, TimeTrial will enhance circadian transcriptomics studies.


Subject(s)
Chronobiology Discipline/methods , Circadian Rhythm , Gene Expression Profiling/methods , Software , Transcriptome , Algorithms , Animals , Humans , Mice , Time Factors
5.
PLoS Genet ; 12(9): e1006326, 2016 09.
Article in English | MEDLINE | ID: mdl-27690135

ABSTRACT

The translation initiation factor eIF3 is a multi-subunit protein complex that coordinates the assembly of the 43S pre-initiation complex in eukaryotes. Prior studies have demonstrated that not all subunits of eIF3 are essential for the initiation of translation, suggesting that some subunits may serve regulatory roles. Here, we show that loss-of-function mutations in the genes encoding the conserved eIF3k and eIF3l subunits of the translation initiation complex eIF3 result in a 40% extension in lifespan and enhanced resistance to endoplasmic reticulum (ER) stress in Caenorhabditis elegans. In contrast to previously described mutations in genes encoding translation initiation components that confer lifespan extension in C. elegans, loss-of-function mutations in eif-3.K or eif-3.L are viable, and mutants show normal rates of growth and development, and have wild-type levels of bulk protein synthesis. Lifespan extension resulting from EIF-3.K or EIF-3.L deficiency is suppressed by a mutation in the Forkhead family transcription factor DAF-16. Mutations in eif-3.K or eif-3.L also confer enhanced resistance to ER stress, independent of IRE-1-XBP-1, ATF-6, and PEK-1, and independent of DAF-16. Our data suggest a pivotal functional role for conserved eIF3k and eIF3l accessory subunits of eIF3 in the regulation of cellular and organismal responses to ER stress and aging.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans , Endoplasmic Reticulum Stress/genetics , Eukaryotic Initiation Factor-3/genetics , Longevity/genetics , Microtubule-Associated Proteins/genetics , Adaptation, Physiological/genetics , Aging/genetics , Animals , Animals, Genetically Modified , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Mutation , Stress, Physiological/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...