Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 225: 115123, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31521280

ABSTRACT

Different amounts of cellulose nanocrystals (CNCs) were added to glycerol-plasticized thermoplastic starch (TPS) to obtain bio-based nanocomposites. First, nanocomposites are prepared by extrusion and their structure is studied at different scales using WAXS (Wide Angle X-ray Scattering) and solid-state NMR (Nuclear Magnetic Resonance) for local/crystalline organization, AF4 (Asymmetrical Flow Field-Flow Fractionation) for molecular weight and chain length, and SEM (Scanning Electron Microscopy) for the morphology at a larger scale. Then, relevant mechanical properties and behavior in physiological conditions (swelling, enzymatic degradation) are characterized. The results show that the incorporation of cellulose nanocrystals up to 2.5 wt% causes a mechanical reinforcement as determined by DMTA (Dynamic Mechanical Thermal Analysis) and reduces the swelling and the enzymatic degradation of the materials compared to reference TPS. This could be linked to the formation of starch-cellulose hydrogen and hydroxyl bonds. Conversely, above 5 wt% CNC content nanocrystals seem to aggregate which in turn worsens the behavior in physiological conditions.


Subject(s)
Biodegradable Plastics/chemistry , Cellulose/chemistry , Nanocomposites/chemistry , Nanoparticles/chemistry , Plasticizers/chemistry , Starch/chemistry , Solanum tuberosum/metabolism , Tensile Strength , Wettability
2.
Carbohydr Polym ; 194: 80-88, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-29801861

ABSTRACT

Starch granules can be extruded to obtain a thermoplastic material. Thermoplastic starch (TPS) usually requires a significant break down of the starch granular organization to form a continuous polysaccharide matrix. In this work, we extrude potato starch with and without a plasticizer and store samples at high humidity to generate recrystallization. A multi-scale investigation of the microstructure is performed by combining different techniques: WAXS and solid-state NMR to describe macromolecule organization and Second Harmonic Generation (SHG) imaging to provide spatial information. Finally, the ability of the material to swell and remain sound in water is assessed. Glycerol-plasticized samples swell the least despite many granules with native-like structure embedded in the starch matrix. Glycerol limits the fragmentation and melting of the granules and crystallites during extrusion but also reduces the proportion of starch molecules in constrained conformations, enabling the formation of a polymer network that can sustain the penetration of water.


Subject(s)
Magnetic Resonance Imaging , Second Harmonic Generation Microscopy , Starch/chemistry , Temperature , Carbohydrate Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...