Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
In Vitro Cell Dev Biol Plant ; 49(6): 643-655, 2013 Dec.
Article in English | MEDLINE | ID: mdl-25767369

ABSTRACT

l-Ascorbic acid (vitamin C) is an abundant metabolite in plant cells and tissues. Ascorbate functions as an antioxidant, as an enzyme cofactor, and plays essential roles in multiple physiological processes including photosynthesis, photoprotection, control of cell cycle and cell elongation, and modulation of flowering time, gene regulation, and senescence. The importance of this key molecule in regulating whole plant morphology, cell structure, and plant development has been clearly established via characterization of low vitamin C mutants of Arabidopsis, potato, tobacco, tomato, and rice. However, the consequences of elevating ascorbate content in plant growth and development are poorly understood. Here we demonstrate that Arabidopsis lines over-expressing a myo-inositol oxygenase or an l-gulono-1,4-lactone oxidase, containing elevated ascorbate, display enhanced growth and biomass accumulation of both aerial and root tissues. To our knowledge this is the first study demonstrating such a marked positive effect in plant growth in lines engineered to contain elevated vitamin C content. In addition, we present evidence showing that these lines are tolerant to a wide range of abiotic stresses including salt, cold, and heat. Total ascorbate content of the transgenic lines remained higher than those of controls under the abiotic stresses tested. Interestingly, exposure to pyrene, a polycyclic aromatic hydrocarbon and known inducer of oxidative stress in plants, leads to stunted growth of the aerial tissue, reduction in the number of root hairs, and inhibition of leaf expansion in wild type plants, while these symptoms are less severe in the over-expressers. Our results indicate the potential of this metabolic engineering strategy to develop crops with enhanced biomass, abiotic stress tolerance, and phytoremediation capabilities.

2.
Plant Physiol ; 150(2): 942-50, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19395407

ABSTRACT

Ascorbic acid (AsA) biosynthesis in plants occurs through a complex, interconnected network with mannose (Man), myoinositol, and galacturonic acid as principal entry points. Regulation within and between pathways in the network is largely uncharacterized. A gene that regulates the Man/l-galactose (l-Gal) AsA pathway, AMR1 (for ascorbic acid mannose pathway regulator 1), was identified in an activation-tagged Arabidopsis (Arabidopsis thaliana) ozone-sensitive mutant that had 60% less leaf AsA than wild-type plants. In contrast, two independent T-DNA knockout lines disrupting AMR1 accumulated 2- to 3-fold greater foliar AsA and were more ozone tolerant than wild-type controls. Real-time reverse transcription-polymerase chain reaction analysis of steady-state transcripts of genes involved in AsA biosynthesis showed that AMR1 negatively affected the expression of GDP-Man pyrophosphorylase, GDP-l-Gal phosphorylase, l-Gal-1-phosphate phosphatase, GDP-Man-3',5'-epimerase, l-Gal dehydrogenase, and l-galactono-1,4-lactone dehydrogenase, early and late enzymes of the Man/l-Gal pathway to AsA. AMR1 expression appears to be developmentally and environmentally controlled. As leaves aged, AMR1 transcripts accumulated with a concomitant decrease in AsA. AMR1 transcripts also decreased with increased light intensity. Thus, AMR1 appears to play an important role in modulating AsA levels in Arabidopsis by regulating the expression of major pathway genes in response to developmental and environmental cues.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Ascorbic Acid/biosynthesis , Galactose/biosynthesis , Mannose/biosynthesis , Adaptation, Physiological/drug effects , Amino Acid Sequence , Arabidopsis/drug effects , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Genes, Reporter , Glucuronidase/metabolism , Molecular Sequence Data , Mutagenesis, Insertional/drug effects , Mutation/genetics , Ozone/pharmacology , Phenotype , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Leaves/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Time Factors
3.
Plant Physiol ; 146(2): 431-40, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18065557

ABSTRACT

Ascorbate (AsA) is the most abundant antioxidant in plant cells and a cofactor for a large number of key enzymes. However, the mechanism of how AsA levels are regulated in plant cells remains unknown. The Arabidopsis (Arabidopsis thaliana) activation-tagged mutant AT23040 showed a pleiotropic phenotype, including ozone resistance, rapid growth, and leaves containing higher AsA than wild-type plants. The phenotype was caused by activation of a purple acid phosphatase (PAP) gene, AtPAP15, which contains a dinuclear metal center in the active site. AtPAP15 was universally expressed in all tested organs in wild-type plants. Overexpression of AtPAP15 with the 35S cauliflower mosaic virus promoter produced mutants with up to 2-fold increased foliar AsA, 20% to 30% decrease in foliar phytate, enhanced salt tolerance, and decreased abscisic acid sensitivity. Two independent SALK T-DNA insertion mutants in AtPAP15 had 30% less foliar AsA and 15% to 20% more phytate than wild-type plants and decreased tolerance to abiotic stresses. Enzyme activity of partially purified AtPAP15 from plant crude extract and recombinant AtPAP15 expressed in bacteria and yeast was highest when phytate was used as substrate, indicating that AtPAP15 is a phytase. Recombinant AtPAP15 also showed enzyme activity on the substrate myoinositol-1-phosphate, indicating that the AtPAP15 is a phytase that hydrolyzes myoinositol hexakisphosphate to yield myoinositol and free phosphate. Myoinositol is a known precursor for AsA biosynthesis in plants. Thus, AtPAP15 may modulate AsA levels by controlling the input of myoinositol into this branch of AsA biosynthesis in Arabidopsis.


Subject(s)
Acid Phosphatase/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Ascorbic Acid/biosynthesis , Glycoproteins/metabolism , Multienzyme Complexes/metabolism , Plant Leaves/metabolism , Acid Phosphatase/genetics , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/physiology , Glycoproteins/genetics , Molecular Sequence Data , Multienzyme Complexes/genetics , Phytic Acid/metabolism
4.
Phytochemistry ; 65(20): 2735-49, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15474560

ABSTRACT

Camptothecin (CPT) is a modified monoterpene indole alkaloid produced by Camptotheca acuminata (Nyssaceae), Nothapodytes foetida, Pyrenacantha klaineana, Merrilliodendron megacarpum (Icacinaceae), Ophiorrhiza pumila (Rubiaceae), Ervatamia heyneana (Apocynaceae) and Mostuea brunonis (Gelsemiaceae), species belonging to unrelated orders of angiosperms. From the distribution of CPT and other secondary metabolites, it has been postulated that the genes encoding enzymes involved in their biosynthesis evolved early during evolution. These genes were presumably not lost during evolution but might have been "switched off" during a certain period of time and "switched on" again at some later point. The CPT derivatives, irinotecan and topotecan, are used throughout the world for the treatment of various cancers, and over a dozen more CPT analogues are currently at various stages of clinical development. The worldwide market size of irinotecan/topotecan in 2002 was estimated at about $750 million and at $1 billion by 2003. In spite of the rapid growth of the market, CPT is still harvested by extraction from bark and seeds of C. acuminata and N. foetida. All parts of C. acuminata contain some CPT, although the highest level is found in young leaves (approximately 4-5 mg g(-1) dry weight), approximately 50% higher than in seeds and 250% higher than in bark. The development of hairy root cultures of O. pumila and C. acuminata, and the cloning and characterization of genes encoding key enzymes of the pathway leading to CPT formation in plants has opened new possibilities to propose alternative and more sustainable production systems for this important alkaloid.


Subject(s)
Camptothecin , Antineoplastic Agents, Phytogenic/pharmacology , Camptothecin/biosynthesis , Camptothecin/pharmacology , Magnoliopsida/genetics , Magnoliopsida/metabolism , Molecular Structure , Phylogeny , Plant Bark/chemistry , Plant Leaves/chemistry , Seeds/chemistry , Topoisomerase I Inhibitors
5.
Plant Physiol ; 134(3): 1200-5, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14976233

ABSTRACT

Two biosynthetic pathways for ascorbate (l-ascorbic acid [AsA]; vitamin C) in plants are presently known, the mannose/l-galactose pathway and an l-GalUA pathway. Here, we present molecular and biochemical evidence for a possible biosynthetic route using myo-inositol (MI) as the initial substrate. A MI oxygenase (MIOX) gene was identified in chromosome 4 (miox4) of Arabidopsis ecotype Columbia, and its enzymatic activity was confirmed in bacterially expressed recombinant protein. Miox4 was primarily expressed in flowers and leaves of wild-type Arabidopsis plants, tissues with a high concentration of AsA. Ascorbate levels increased 2- to 3-fold in homozygous Arabidopsis lines overexpressing the miox4 open reading frame, thus suggesting the role of MI in AsA biosynthesis and the potential for using this gene for the agronomic and nutritional enhancement of crops.


Subject(s)
Arabidopsis/metabolism , Ascorbic Acid/biosynthesis , Oxygenases/metabolism , Arabidopsis/genetics , Base Sequence , Cloning, Molecular , DNA, Plant/genetics , Escherichia coli/genetics , Flowers/metabolism , Gene Expression , Genes, Plant , Inositol Oxygenase , Models, Biological , Open Reading Frames , Oxygenases/genetics , Plant Leaves/metabolism , Plants, Genetically Modified , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Tissue Distribution
6.
Plant Mol Biol ; 53(6): 837-44, 2003 Dec.
Article in English | MEDLINE | ID: mdl-15082929

ABSTRACT

Vitamin C (L-ascorbic acid) has important antioxidant and metabolic functions in both plants and animals, humans have lost the ability to synthesize it. Fresh produce is the major source of vitamin C in the human diet yet only limited information is available concerning its route(s) of synthesis in plants. In contrast, the animal vitamin C biosynthetic pathway has been elucidated since the 1960s. Two biosynthetic pathways for vitamin C in plants are presently known. The D-mannose pathway appears to be predominant in leaf tissue, but a D-galacturonic acid pathway operates in developing fruits. Our group has previously shown that transforming lettuce and tobacco with a cDNA encoding the terminal enzyme of the animal pathway, L-gulono-1,4-lactone oxidase (GLOase, EC 1.1.3.8), increased the vitamin C leaf content between 4- and 7-fold. Additionally, we found that wild-type (wt) tobacco plants had elevated vitamin C levels when fed L-gulono-1,4-lactone, the animal precursor. These data suggest that at least part of the animal pathway may be present in plants. To further investigate this possibility, wild-type and vitamin-C-deficient Arabidopsis thaliana (L.) Heynh (vtc) plants were transformed with a 35S: GLOase construct, homozygous lines were developed, and vitamin C levels were compared to those in untransformed controls. Wild-type plants transformed with the construct showed up to a 2-fold increase in vitamin C leaf content compared to controls. All five vtc mutant lines expressing GLOase had a rescued vitamin C leaf content equal or higher (up to 3-fold) than wt leaves. These data and the current knowledge about the identity of genes mutated in the vtc lines suggest that an alternative pathway is present in plants, which can bypass the deficiency of GDP-mannose production of the vtc1-1 mutant and possibly circumvent other steps in the D-mannose pathway to synthesize vitamin C.


Subject(s)
Arabidopsis/genetics , Ascorbic Acid/metabolism , Mutation , Sugar Alcohol Dehydrogenases/metabolism , Arabidopsis/enzymology , Arabidopsis/metabolism , Genetic Complementation Test , L-Gulonolactone Oxidase , Phenotype , Plant Leaves/enzymology , Plant Leaves/genetics , Plant Leaves/metabolism , Plants, Genetically Modified , Sugar Alcohol Dehydrogenases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...