Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 2476, 2017 05 30.
Article in English | MEDLINE | ID: mdl-28559564

ABSTRACT

Therapeutic concepts exploiting tumor-specific antibodies are often established in pre-clinical xenograft models using immuno-deficient mice. More complex therapeutic paradigms, however, warrant the use of immuno-competent mice, that more accurately capture the relevant biology that is being exploited. These models require the use of (surrogate) mouse or rat antibodies to enable optimal interactions with murine effector molecules. Immunogenicity is furthermore decreased, allowing longer-term treatment. We recently described controlled Fab-arm exchange (cFAE) as an easy-to-use method for the generation of therapeutic human IgG1 bispecific antibodies (bsAb). To facilitate the investigation of dual-targeting concepts in immuno-competent mice, we now applied and optimized our method for the generation of murine bsAbs. We show that the optimized combinations of matched point-mutations enabled efficient generation of murine bsAbs for all subclasses studied (mouse IgG1, IgG2a and IgG2b; rat IgG1, IgG2a, IgG2b, and IgG2c). The mutations did not adversely affect the inherent effector functions or pharmacokinetic properties of the corresponding subclasses. Thus, cFAE can be used to efficiently generate (surrogate) mouse or rat bsAbs for pre-clinical evaluation in immuno-competent rodents.


Subject(s)
Antibodies, Bispecific/biosynthesis , Immunoglobulin G/immunology , Neoplasms/therapy , Animals , Antibodies, Bispecific/immunology , Humans , Immunoglobulin G/genetics , Immunoglobulin G/therapeutic use , Mice , Models, Animal , Neoplasms/genetics , Neoplasms/immunology , Point Mutation/genetics , Point Mutation/immunology , Rats , Xenograft Model Antitumor Assays
2.
Protein Expr Purif ; 121: 133-40, 2016 May.
Article in English | MEDLINE | ID: mdl-26826313

ABSTRACT

Bispecific antibody generation is actively pursued for therapeutic and research antibody development. Although there are multiple strategies for generating bispecific antibodies (bsAbs); the common challenge is to develop a scalable method to prepare bsAbs with high purity and yield. The controlled Fab-arm exchange (cFAE) method combines two parental monoclonal antibodies (mAbs), each with a matched point mutation, F405L and K409R in the respective CH3 domains. The conventional process employs two steps: the purification of two parental mAbs from culture supernatants followed by cFAE. Following a reduction/oxidation reaction, the bispecific mAb is formed with greater than 95% heterodimerization efficiency. In this study, cFAE was initiated in culture supernatants expressing the two parental mAbs, thereby eliminating the need to first purify the parental mAbs. The bsAbs formed in culture supernatant was then purified using a Protein A affinity chromatography. The BsAbs generated in this manner had efficiency comparable to the conventional method using purified parental mAbs. BsAbs prepared by two different routes showed indistinguishable characteristics by SDS capillary electrophoresis, analytical size exclusion, and cation exchange chromatography. This alternative method significantly shortened timelines and reduced resources required for bsAb generation, providing an improved process with potential benefits in large-scale bsAb preparation, as well as for HTP small-scale bsAb matrix selection.


Subject(s)
Antibodies, Bispecific/biosynthesis , Antibodies, Monoclonal/biosynthesis , Chromatography , Antibodies, Bispecific/immunology , Antibodies, Bispecific/isolation & purification , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , Culture Media , Humans , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/immunology , Immunoglobulin G/immunology , Point Mutation
3.
J Mol Recognit ; 25(3): 155-64, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22407979

ABSTRACT

Glucagon-like peptide-2 (GLP-2) is a member of the glucagon multigene family that is produced by intestinal enteroendocrine cells in response to food intake. GLP-2 stimulates growth of the intestinal epithelium, enhances its barrier functions, and increases nutrient uptake. Therefore, a GLP-2 agonist may be efficacious in human diseases characterized by malabsorption or injury to the gastrointestinal epithelium. MIMETIBODY™ refers to a proprietary scaffold developed to extend the half-life of rapidly cleared peptides. It consists of a peptide linked to a scaffold that contains sequence elements from a human immunoglobulin G including those that allow recycling through the FcRn. The GLP-2 sequence was engineered into the MIMETIBODY™ scaffold. The primary state of both GLP-2 and the GLP-2 MIMETIBODY™ in DPBS was a noncovalently associated dimer indicative of self-interaction. The increased heterogeneity and the decreased lot-to-lot reproducibility caused by the self-interaction of therapeutic proteins are a challenge to drug development. A similar protein, GLP-1 MIMETIBODY™, contains the related GLP-1 peptide and does not form a dimer under similar conditions. Therefore, to minimize or abrogate dimerization, several variants were made by substituting GLP-2 amino acids with the corresponding amino acids from GLP-1. Molecular weight and secondary structure analyses reveal that substituting leucine for glutamine at position 17 (L17Q) reduces dimerization and α-helix content yet retains bioactivity.


Subject(s)
Glucagon-Like Peptide 2/chemistry , Peptide Fragments/chemistry , Protein Multimerization , Amino Acid Sequence , Amino Acid Substitution , Chromatography, Gel , Cyclic AMP/biosynthesis , Glucagon-Like Peptide 1/chemistry , Glucagon-Like Peptide 2/genetics , Glucagon-Like Peptide-1 Receptor , Glucagon-Like Peptide-2 Receptor , HEK293 Cells , Humans , Leucine/chemistry , Leucine/genetics , Molecular Sequence Data , Molecular Weight , Peptide Fragments/biosynthesis , Peptide Fragments/genetics , Peptide Fragments/pharmacology , Protein Structure, Quaternary , Protein Structure, Secondary , Receptors, Glucagon/agonists , Receptors, Glucagon/metabolism
4.
J Pharmacol Exp Ther ; 333(2): 574-83, 2010 May.
Article in English | MEDLINE | ID: mdl-20167840

ABSTRACT

Glucagon-like peptide 2 (GLP-2) is a pleiotropic intestinotrophic hormone that we hypothesized could lessen gastrointestinal inflammation associated with postoperative ileus (POI). To test this idea, the prophylactic timing and dose of a long-acting variant of human GLP-2 linked to the Fc portion of murine immunoglobulin G (IgG) (GLP-2/IgG) was optimized in a murine model of POI. Surgically treated mice received a single dose of GLP-2/IgG, IgG isotype control, or phosphate-buffered saline 1 to 48 h before small bowel surgical manipulation. The distribution of orally fed fluorescein isothiocyanate-dextran and histological analyses of myeloperoxidase-positive immune cells were determined 24 and 48 h postoperatively. TaqMan quantitative polymerase chain reaction was used to determine early changes in mRNA expression in the muscularis or mucosa. In normal mice, prolonged exposure to GLP-2 increased upper gastrointestinal (GI) transit and mucosal weight. When administered 1 or 3 h before surgery, GLP-2/IgG reduced the leukocyte infiltrate 24 and 48 h postoperatively and improved GI transit 48 h postoperatively. Surgical manipulation rapidly increased gene expression of proinflammatory cytokines and enzymes for kinetically active mediators in the mucosa and muscularis. GLP-2/IgG2a affected the expression of genes associated with mucosal inflammation and barrier function. We conclude that prophylactic treatment with a long-acting GLP-2 agonist ameliorates inflammation and improves intestinal dysmotility associated with surgical manipulation of the bowel. The action of GLP-2 is consistent with a lessening of inflammation, leading to a more rapid recovery.


Subject(s)
Gastrointestinal Motility/drug effects , Ileus/drug therapy , Inflammation/drug therapy , Receptors, Glucagon/agonists , Animals , Disease Models, Animal , Female , Gastrointestinal Motility/physiology , Gene Expression/drug effects , Gene Expression/physiology , Glucagon-Like Peptide-2 Receptor , Ileus/physiopathology , Inflammation/physiopathology , Intestine, Small/metabolism , Intestine, Small/physiopathology , Intestines/drug effects , Intestines/physiopathology , Male , Mice , Peroxidase/physiology , Postoperative Complications/drug therapy , Postoperative Complications/physiopathology , Receptors, Glucagon/physiology , Receptors, Glucagon/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...