Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Membr Biol ; 253(5): 479-489, 2020 10.
Article in English | MEDLINE | ID: mdl-32954443

ABSTRACT

Vacuolar and plasma membranes were isolated by a detergent-free method from beet roots (Beta vulgaris L.), and were fractionated in a sucrose density gradient of 15-60% by high-speed centrifugation at 200,000×g during 18 h. The membrane material distributed over the sucrose density gradient was analyzed for the presence of lipids characteristic of raft structures in different zones of the gradient. The quantitative and qualitative content of lipids and sterols, and the composition of fatty acids were analyzed. Some membrane structures differing in their biochemical characteristics were revealed to be located in different zones of the sucrose gradient. The results of the analysis allowed us to identify three zones in the sucrose gradient after the vacuolar membrane fractionation and two zones in the plasma membrane where membrane structures, which may be defined as rafts for their lipid composition, were presented.


Subject(s)
Beta vulgaris , Membrane Lipids/chemistry , Membrane Lipids/isolation & purification , Membrane Microdomains/chemistry , Beta vulgaris/chemistry , Cell Fractionation/methods , Chemical Fractionation , Fatty Acids/chemistry , Gas Chromatography-Mass Spectrometry , Sterols/chemistry
2.
Planta ; 251(6): 107, 2020 May 21.
Article in English | MEDLINE | ID: mdl-32440739

ABSTRACT

MAIN CONCLUSION: The vacuolar membrane is an essential component in protecting the plant cell from stress factors. Different variations in the tonoplast lipid content, which depend on the type of stress, have been reviewed. The lipid content of vacuolar membranes of beet roots (Beta vulgaris L.) under hypoosmotic, hyperosmotic and oxidative types of stress has been studied. These types of stress induce variations in the content of almost all the classes of studied lipids (phospholipids, glycoglycerolipids, sterols and fatty acids). The variations, which are characteristic of a single stress, include the variations (i) in the content of individual glycoglycerolipids and in their total content, (ii) in the total content of sterols, and (iii) in the ratio of content of phosphatidylcholine/phosphatidylethanolamine in the scope of tonoplast phospholipids. Variations observed under all of the types of stress under scrutiny include (i) variations in the content of fatty acids of tonoplast lipids, (ii) some decrease in the content of phosphatidic acid and phosphatidylethanolamine, and (iii) variations in the content of individual sterols. Stigmasterol, campesterol, as well as the stigmasterol/sitosterol ratio increased in varying degrees under all of the types of stress. The most substantial variations have been observed in the content of sterols under abiotic stress. This is probably due to role of sterols in regulation of such membrane characteristics as permeability and microviscosity. In our opinion, sterols may represent one of the main components of tonoplast adaptive mechanisms.


Subject(s)
Beta vulgaris/chemistry , Sterols/metabolism , Vacuoles/chemistry , Beta vulgaris/physiology , Cell Membrane/chemistry , Cell Membrane/physiology , Cell Membrane Permeability , Glycolipids/metabolism , Stress, Physiological , Vacuoles/physiology
3.
Funct Plant Biol ; 46(9): 869-876, 2019 08.
Article in English | MEDLINE | ID: mdl-31196376

ABSTRACT

In the present work, we studied detergent-resistant membrane microdomains (DRM) of chloroplasts and mitochondria - organelles that provide photosynthesis and respiration in a plant cell. The objects of the study were euhalophyte Salicorniaperennans Willd., which relates to salt-accumulating plants and glycohalophyte Artemisia santonica L., which relates to salt-excluder plants. To get DRM, the chloroplast and mitochondria fractions were solubilised with a solution containing Triton X-100. The resulting material was introduced in sucrose gradient of 35-25-15-5% and centrifuged at 200000 g, 2 h. The presence of an opalescent detergent-resistant zone of membranes in 15% sucrose layer and a specific lipid composition of this zone were the signs of successful rafts obtaining of. The isolated DRM are sterol- and cerebroside-enriched (27-89% of the sum of membrane lipids) domains with a high degree of saturation of fatty acids composition (more than 50% of the sum). The main DRM-specific lipids of chloroplast of A. santonica glycohalophyte are cerebrosides, whereas those of S. perennans euhalophyte are sterols. The revealed differences in the composition of raft-forming lipids in chloroplast and mitochondria halophyte membranes, differing in the salt-resistance strategy, suggest the participation of rafts in salt-resistance mechanisms.


Subject(s)
Detergents , Salt-Tolerant Plants , Membrane Lipids , Membrane Microdomains , Sterols
4.
Int J Phytoremediation ; 21(10): 980-984, 2019.
Article in English | MEDLINE | ID: mdl-31016990

ABSTRACT

The article dwells upon identifying the effect of cadmium on the roots of beetroot. The exposure effects of various concentrations of cadmium were studied at different levels of the plant organization (tissue pieces, organelles, membrane vesicles). The effect was noted only at a concentration of 100 µm. The negative effect of cadmium on the roots tissues of beetroot appeared with an increase in permeability and a decrease in the stability of cell membranes due to a change in the composition of fatty acids of membrane lipids and an increase in oxidation processes. The effect of cadmium in model experiments on the activity of the proton pumps of the vacuolar membrane has been evaluated. The pumps provide for the transport of heavy metals into the vacuole, which is one of the effective mechanisms for phytoremediation. The influence of cadmium in model experiments on the activity of the proton pump of a vacuolar membrane was evaluated. Under the influence of cadmium, a decrease in the activity of V-ATPase was observed, while the activity of V-PPase did not change. The results obtained complement our understanding of the damaging effects that occur in plant cells under cadmium stress.


Subject(s)
Beta vulgaris , Metals, Heavy , Biodegradation, Environmental , Cadmium , Plant Roots
5.
Planta ; 237(3): 859-71, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23143221

ABSTRACT

The experiments conducted on tonoplast of Beta vulgaris L. roots were performed to identify detergent-resistant lipid-protein microdomains (DRMs, interpreted as lipid rafts).The presence of DRMs can be found when dynamic clustering of sphingolipids, sterols, saturated fatty acids is registered, and the insolubility of these microdomains in nonionic detergents at low temperatures is proven. The elucidation of tonoplast microdomains has been based on results obtained with the aid of high-speed centrifuging in the sucrose gradient. The experiments have shown that tonoplast microdomains are rich in sphingolipids, free sterols and saturated fatty acids (such a lipid content is also typical of lipid-protein microdomains of other membranes), while only few phospholipids are present in tonoplast microdomains. The presence of microdomains has been confirmed by fluorescence and confocal microscopy using filipin and Laurdan as fluorescent probes. The experiments with Laurdan have shown that tonoplast microdomains are characterized by a high order compared to characteristics of the rest of the tonoplast. Thus, the presence of detergent-resistant lipid-protein microdomains in the tonoplast has been demonstrated.


Subject(s)
Beta vulgaris/metabolism , Detergents/pharmacology , Intracellular Membranes/metabolism , Membrane Microdomains/metabolism , Vacuoles/metabolism , 2-Naphthylamine/analogs & derivatives , 2-Naphthylamine/metabolism , Beta vulgaris/drug effects , Centrifugation, Density Gradient , Enzyme Inhibitors/pharmacology , Fatty Acids/metabolism , Intracellular Membranes/drug effects , Laurates/metabolism , Membrane Microdomains/drug effects , Plant Proteins/metabolism , Proton-Translocating ATPases/antagonists & inhibitors , Proton-Translocating ATPases/metabolism , Sterols/metabolism , Vacuoles/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...