Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 13(12): 6210-5, 2013.
Article in English | MEDLINE | ID: mdl-24188400

ABSTRACT

We employ tip-enhanced infrared near-field microscopy to study the plasmonic properties of epitaxial quasi-free-standing monolayer graphene on silicon carbide. The near-field images reveal propagating graphene plasmons, as well as a strong plasmon reflection at gaps in the graphene layer, which appear at the steps between the SiC terraces. When the step height is around 1.5 nm, which is two orders of magnitude smaller than the plasmon wavelength, the reflection signal reaches 20% of its value at graphene edges, and it approaches 50% for step heights as small as 5 nm. This intriguing observation is corroborated by numerical simulations and explained by the accumulation of a line charge at the graphene termination. The associated electromagnetic fields at the graphene termination decay within a few nanometers, thus preventing efficient plasmon transmission across nanoscale gaps. Our work suggests that plasmon propagation in graphene-based circuits can be tailored using extremely compact nanostructures, such as ultranarrow gaps. It also demonstrates that tip-enhanced near-field microscopy is a powerful contactless tool to examine nanoscale defects in graphene.


Subject(s)
Carbon Compounds, Inorganic/chemistry , Graphite/chemistry , Nanostructures/chemistry , Silicon Compounds/chemistry , Electromagnetic Fields , Microscopy, Atomic Force , Surface Plasmon Resonance , Surface Properties
2.
Nano Lett ; 10(6): 1985-90, 2010 Jun 09.
Article in English | MEDLINE | ID: mdl-20465271

ABSTRACT

A new strategy to control the flow of surface plasmon polaritons at metallic surfaces is presented. It is based on the application of the concept of transformation optics to devise the optical parameters of the dielectric medium placed on top of the metal surface. We describe the general methodology for the design of transformation optical devices for surface plasmons and analyze, for proof-of-principle purposes, three representative examples with different functionalities: a beam shifter, a cylindrical cloak, and a ground-plane cloak.

3.
Opt Express ; 16(25): 20227-40, 2008 Dec 08.
Article in English | MEDLINE | ID: mdl-19065161

ABSTRACT

The impact of the system design on the control of coupling between planar waveguide modes and surface plasmon polaritons (SPP) is analyzed. We examine how the efficiency of the coupling can be enhanced by an appropriate dimensioning of a multi-layer device structure without using additional gratings. We demonstrate that by proper design the length of the device can be dramatically reduced through fabrication a surface plasmon resonance sensor based on the SPP-photon transformation rather then on SPP dissipation.


Subject(s)
Computer-Aided Design , Models, Theoretical , Refractometry/instrumentation , Surface Plasmon Resonance/instrumentation , Computer Simulation , Equipment Design , Equipment Failure Analysis , Light , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL
...