Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Chem Biol ; 28(10): 1420-1432.e9, 2021 10 21.
Article in English | MEDLINE | ID: mdl-33621482

ABSTRACT

Bacterial persistence coupled with biofilm formation is directly associated with failure of antibiotic treatment of tuberculosis. We have now identified 4-(4,7-DiMethyl-1,2,3,4-tetrahydroNaphthalene-1-yl)Pentanoic acid (DMNP), a synthetic diterpene analogue, as a lead compound that was capable of suppressing persistence and eradicating biofilms in Mycobacterium smegmatis. By using two reciprocal experimental approaches - ΔrelMsm and ΔrelZ gene knockout mutations versus relMsm and relZ overexpression technique - we showed that both RelMsm and RelZ (p)ppGpp synthetases are plausible candidates for serving as targets for DMNP. In vitro, DMNP inhibited (p)ppGpp-synthesizing activity of purified RelMsm in a concentration-dependent manner. These findings, supplemented by molecular docking simulation, suggest that DMNP targets the structural sites shared by RelMsm, RelZ, and presumably by a few others as yet unidentified (p)ppGpp producers, thereby inhibiting persister cell formation and eradicating biofilms. Therefore, DMNP may serve as a promising lead for development of antimycobacterial drugs.


Subject(s)
Bacterial Proteins/metabolism , Biofilms/drug effects , Diterpenes/pharmacology , Ligases/metabolism , Mycobacterium smegmatis/enzymology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Binding Sites , Diterpenes/chemistry , Diterpenes/metabolism , Ligases/antagonists & inhibitors , Microbial Sensitivity Tests , Molecular Docking Simulation , Mycobacterium smegmatis/drug effects , Mycobacterium smegmatis/physiology , Protein Structure, Tertiary
2.
Microorganisms ; 8(5)2020 May 15.
Article in English | MEDLINE | ID: mdl-32429211

ABSTRACT

Escherichia coli strains isolated from case of colibacillosis in Russian poultry farms in the region of Perm Krai were analyzed for their sensitivity to main antibiotics and bacteriocins. Sensitivity profiles for 9 antibiotics and 20 bacteriocins were determined with the disc diffusion method and the overlay test, respectively. Further, with the PCR the presence of several bla and integron 1 genes was revealed and the phylogenetic group for each strain determined. Among the 28 studied E. coli strains 85.7% were resistant to at least three antibiotics, 53.6% to five or more drugs, and 10.7% to eight antibiotics. PCR revealed that the blaTEM gene was harbored by 71.4% of strains and the blaCTX-M gene by 53.6% of strains. The class 1 integrons were found in 28.6% of strains. All of the studied strains were insensitive to ten or more bacteriocins. More than 90% of the studied strains were insensitive to pore-forming colicins of group A and B colicins, while 60.7% were insensitive to colicins with DNase and RNase activity. All of the analyzed strains were insensitive to at least two of the tested microcins. Neither the antibiotic resistance profile nor the bacteriocin resistance profile correlated with phylogenetic group of the strains. Thus, the studied strains were shown to possess high levels of multiple resistance to antibiotics and insensitivity to bacteriocins.

3.
Can J Microbiol ; 59(9): 604-10, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24011343

ABSTRACT

Pseudomonas aeruginosa and Escherichia coli are known to be involved in mixed communities in diverse niches. In this study we examined the influence of the predominant form of cell existence of and the exometabolite production by P. aeruginosa strains on interspecies interactions, in vitro. Bacterial numbers of P. aeruginosa and E. coli in mixed plankton cultures and biofilms compared with their numbers in single plankton cultures and biofilms changed in a different way, but were in accordance with the form of P. aeruginosa cell existence. The mass of a mixed-species biofilm was greater than the mass of a single-species biofilm. Among the mixed biofilms, the one with the "planktonic" P. aeruginosa strain had the least biomass. The total pyocyanin and pyoverdin levels were found to be lower in all mixed plankton cultures. Despite this, clinical P. aeruginosa strains irrespective of the predominant form of existence ("biofilm" or "planktonic") had a higher total concentration of exometabolites than did the reference strain in 12-24 h mixed cultures. The metabolism of E. coli, according to its bioluminescence, was reduced in mixed cultures, and the decrease was by 20- to 100-fold greater with the clinical Pseudomonas strains than the reference Pseudomonas strain. Thus, both the predominant form of existence of and the exometabolite production by distinct P. aeruginosa strains should be considered to fully understand the interspecies relationship and bacteria survival in natural communities.


Subject(s)
Biofilms , Escherichia coli/physiology , Plankton , Pseudomonas aeruginosa/physiology , Coculture Techniques , Ecosystem , Escherichia coli/growth & development , Humans , Microbial Interactions , Oligopeptides/metabolism , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/growth & development , Pyocyanine/metabolism
4.
Res Microbiol ; 163(2): 83-91, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22138596

ABSTRACT

Bactericidal antibiotics (fluoroquinolones, aminoglycosides and cephalosporins) at their sublethal concentrations were able to produce hydroxyl radicals, hydrogen peroxide and superoxide anions (ROS) in Escherichia coli cells, which resulted in damage to proteins and DNA. The cells responded to oxidative stress by a 2-3-fold increase in cell polyamines (putrescine, spermidine) produced as a consequence of upregulation of ornithine decarboxylase (ODC). Relief of oxidative stress by cessation of culture aeration or addition of antioxidants substantially diminished or even completely abolished polyamine accumulation observed in response to antibiotics. Alternatively, inhibition of polyamine synthesis resulted in enhancement of oxidative stress in antibiotic-processed cells. When added to antibiotic-inhibited culture, polyamines reduced intracellular ROS production and thereby prevented damage to proteins and DNA. These effects eventually resulted in a substantial increase in cell viability, growth recovery and antibiotic resistance that were more strongly expressed in polyamine-deficient mutants.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Oxidative Stress/drug effects , Putrescine/biosynthesis , Spermidine/biosynthesis , Aminoglycosides/pharmacology , Cefotaxime/pharmacology , Drug Resistance, Bacterial , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/biosynthesis , Gene Expression Regulation, Bacterial/drug effects , Hydrogen Peroxide/metabolism , Microbial Sensitivity Tests , Ofloxacin/pharmacology , Ornithine Decarboxylase/biosynthesis , Ornithine Decarboxylase/metabolism , Ornithine Decarboxylase Inhibitors , Putrescine/metabolism , Spermidine/metabolism , Superoxides/metabolism , Trans-Activators/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...