Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Biomech ; 38(3): 190-197, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35580844

ABSTRACT

This study aimed to determine the relationship between lower limb muscle strength and explosive force with force plate-derived timing measures of reactive stepping. Nineteen young, healthy adults responded to 6 perturbations using an anterior lean-and-release system. Foot-off, swing, and restabilization times were estimated from force plates. Peak isokinetic torque, isometric torque, and explosive force of the knee extensors/flexors and plantar/dorsiflexors were measured using isokinetic dynamometry. Correlations were run based on a priori hypotheses and corrected for the number of comparisons (Bonferroni) for each variable. Knee extensor explosive force was negatively correlated with swing time (r = -.582, P = .009). Knee flexor peak isometric torque also showed a negative association with restabilization time (r = -.459, P = .048); however, this was not statistically significant after correcting for multiple comparisons. There was no significant relationship between foot-off time and knee or plantar flexor explosive force (P > .025). These findings suggest that there may be utility to identifying specific aspects of reactive step timing when studying the relationship between muscle strength and reactive balance control. Exercise training aimed at improving falls risk should consider targeting specific aspects of muscle strength depending on specific deficits in reactive stepping.


Subject(s)
Knee , Muscle, Skeletal , Adult , Humans , Isometric Contraction/physiology , Knee/physiology , Knee Joint/physiology , Muscle Strength/physiology , Muscle, Skeletal/physiology , Torque
2.
Gait Posture ; 86: 94-100, 2021 05.
Article in English | MEDLINE | ID: mdl-33711616

ABSTRACT

BACKGROUND: Currently, there is uncertainty as to whether movement variability is errorful or exploratory. RESEARCH QUESTION: This study aimed to determine if gait variability represents exploration to improve stability. We hypothesized that 1) spatiotemporal gait features will be more variable prior to an expected perturbation than during unperturbed walking, and 2) increased spatiotemporal gait variability pre-perturbation will correlate with improved stability post-perturbation. METHODS: Sixteen healthy young adults completed 15 treadmill walking trials within a motion simulator under two conditions: unperturbed and expecting a perturbation. Participants were instructed not to expect a perturbation for unperturbed trials, and to expect a single transient medio-lateral balance perturbation for perturbed trials. Kinematic data were collected during the trials. Twenty steps were recorded post-perturbation. Unperturbed and pre-perturbation gait variabilities were defined by the short- and long-term variabilities of step length, width, and time, using 100 steps from pre-perturbation and unperturbed trials. Paired t-tests identified between-condition differences in variabilities. Stability was defined as the number of steps to centre of mass restabilization post-perturbation. Multiple regression analyses determined the effect of pre-perturbation variability on stability. RESULTS: Long-term step width variability was significantly higher pre-perturbation compared to unperturbed walking (mean difference = 0.28 cm, p = 0.0073), with no significant differences between conditions for step length or time variabilities. There was no significant relationship between pre-perturbation variability and post-perturbation restabilization. SIGNIFICANCE: Increased pre-perturbation step width variability was neither beneficial nor detrimental to stability. However, the increased variability in medio-lateral foot placement suggests that participants adopted an exploratory strategy in anticipation of a perturbation.


Subject(s)
Exercise Test , Gait/physiology , Postural Balance/physiology , Walking/physiology , Adult , Biomechanical Phenomena , Female , Humans , Male , Young Adult
3.
J Biomech ; 115: 110185, 2021 01 22.
Article in English | MEDLINE | ID: mdl-33385871

ABSTRACT

Characterizing reactive stepping is important to describe the response's effectiveness. Timing of reactive step initiation, execution, and termination have been frequently reported to characterize reactive balance control. However, the test-retest reliabilities of these measures are unknown. Accordingly, the purpose of this study was to determine the between- and within-session test-retest reliabilities of various force plate-derived measures of reactive stepping. Nineteen young, healthy adults responded to 6 small (~8-10% of body weight) and 6 large perturbations (~13-15% of body weight) using an anterior lean-and-release system. Tests were conducted during two visits separated by at least two days. Participants were instructed to recover balance in as few steps as possible. Step onset, foot-off, swing, and restabilization times were extracted from force plates. Relative test-retest reliability was determined through intraclass correlation coefficients (ICCs) and 95% confidence intervals (CIs). Absolute test-retest reliability was assessed using the standard error of the measurement (SEM). Foot-off and swing times had the highest between- and within-session test-retest reliabilities regardless of perturbation size (between-session ICC = 0.898-0.942; within-session ICC = 0.455-0.753). Conversely, step onset and restabilization times had lower ICCs and wider CIs (between-session ICC = 0.495-0.825; within-session ICC = -0.040-0.174). Between-session test-retest reliability was higher (ICC = 0.495-0.942) for all measures than within-session test-retest reliability (ICC = -0.040-0.753). Time to restabilization had the highest SEM, indicating the worst absolute reliability of the measures. These findings suggest multiple baseline sessions are needed for measuring restabilization and step onset times. The minimal detectable changes reported provide an index for measuring meaningful change due to an intervention.


Subject(s)
Foot , Postural Balance , Adult , Humans , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...