Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Rep ; 11(1): 22312, 2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34785752

ABSTRACT

The paper presents a very efficient, quick, low-cost and minimally micro-destructive approach to discriminating between Roman artefacts sculpted with Göktepe (Aphrodisia, Turkey) or Carrara (Apuan Alps, Italy) white marbles by using a standard X-Ray Powder Diffractometer (XRPD) and a refinement of the unit cell parameters and volume of calcite. At present, the routine way of differentiating between these two almost indistinguishable by-eye marbles is based on the typically higher strontium content of calcite in the Microasiatic lithotype, a unique geochemical-crystallographic feature with respect to all other non-Göktepe fine-grained white marbles used in classical times. The XRPD approach has been verified by testing eighteen samples of known composition, nine from Carrara and nine from Göktepe quarries, which had already been analysed with other laboratory techniques. The applicability of the method to archaeological artefacts was confirmed by an archaeometric study performed on some famous Roman sculptures of the National Archaeological Museum of Venice and from Hadrian's Villa at Tivoli. The results show that Göktepe/Carrara discrimination is always possible and that this XRPD approach can potentially become a useful and low-cost routine procedure to solve provenance issues.

2.
Sci Rep ; 11(1): 13212, 2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34168177

ABSTRACT

Solar System bodies undergo to daily and periodical variations of temperature that mainly depend on their closeness to the Sun. It is known that mineral expansion and contraction due to such variations modify the thermal infrared spectra acquired on solid surfaces. Therefore, it becomes crucial to know the best temperature range at which the acquisition itself should be carried out to get reliable information on the mineralogy of such bodies. Here we provide the thermal expansion of olivine between 20 and 298 K determined by X-ray diffraction. Our data reveal the non-linear behaviour of silicates that undergo to low temperatures, where volume variations appear positively correlated with temperatures. Subtle bond-length variations occurring at low temperatures are then expected to minimally affect vibrational absorption positions. We suggest that thermal infrared spectra of those Solar-System surfaces that are not exceeding 300 K provide reliable information about not only the silicate mineral identification but also on their chemical composition, regardless of the instantaneous temperature.

3.
Sci Rep ; 9(1): 14672, 2019 Oct 11.
Article in English | MEDLINE | ID: mdl-31605020

ABSTRACT

Garnet is the archetypal cubic mineral, occurring in a wide variety of rock types in Earth's crust and upper mantle. Owing to its prevalence, durability and compositional diversity, garnet is used to investigate a broad range of geological processes. Although birefringence is a characteristic feature of rare Ca-Fe3+ garnet and Ca-rich hydrous garnet, the optical anisotropy that has occasionally been documented in common (that is, anhydrous Ca-Fe2+-Mg-Mn) garnet is generally attributed to internal strain of the cubic structure. Here we show that common garnet with a non-cubic (tetragonal) crystal structure is much more widespread than previously thought, occurring in low-temperature, high-pressure metamorphosed basalts (blueschists) from subduction zones and in low-grade metamorphosed mudstones (phyllites and schists) from orogenic belts. Indeed, a non-cubic symmetry appears to be typical of common garnet that forms at low temperatures (<450 °C), where it has a characteristic Fe-Ca-rich composition with very low Mg contents. We propose that, in most cases, garnet does not initially grow cubic. Our discovery indicates that the crystal chemistry and thermodynamic properties of garnet at low-temperature need to be re-assessed, with potential consequences for the application of garnet as an investigative tool in a broad range of geological environments.

4.
Nature ; 555(7695): 237-241, 2018 03 07.
Article in English | MEDLINE | ID: mdl-29516998

ABSTRACT

Laboratory experiments and seismology data have created a clear theoretical picture of the most abundant minerals that comprise the deeper parts of the Earth's mantle. Discoveries of some of these minerals in 'super-deep' diamonds-formed between two hundred and about one thousand kilometres into the lower mantle-have confirmed part of this picture. A notable exception is the high-pressure perovskite-structured polymorph of calcium silicate (CaSiO3). This mineral-expected to be the fourth most abundant in the Earth-has not previously been found in nature. Being the dominant host for calcium and, owing to its accommodating crystal structure, the major sink for heat-producing elements (potassium, uranium and thorium) in the transition zone and lower mantle, it is critical to establish its presence. Here we report the discovery of the perovskite-structured polymorph of CaSiO3 in a diamond from South African Cullinan kimberlite. The mineral is intergrown with about six per cent calcium titanate (CaTiO3). The titanium-rich composition of this inclusion indicates a bulk composition consistent with derivation from basaltic oceanic crust subducted to pressures equivalent to those present at the depths of the uppermost lower mantle. The relatively 'heavy' carbon isotopic composition of the surrounding diamond, together with the pristine high-pressure CaSiO3 structure, provides evidence for the recycling of oceanic crust and surficial carbon to lower-mantle depths.

5.
Nature ; 507(7491): 221-4, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-24622201

ABSTRACT

The ultimate origin of water in the Earth's hydrosphere is in the deep Earth--the mantle. Theory and experiments have shown that although the water storage capacity of olivine-dominated shallow mantle is limited, the Earth's transition zone, at depths between 410 and 660 kilometres, could be a major repository for water, owing to the ability of the higher-pressure polymorphs of olivine--wadsleyite and ringwoodite--to host enough water to comprise up to around 2.5 per cent of their weight. A hydrous transition zone may have a key role in terrestrial magmatism and plate tectonics, yet despite experimental demonstration of the water-bearing capacity of these phases, geophysical probes such as electrical conductivity have provided conflicting results, and the issue of whether the transition zone contains abundant water remains highly controversial. Here we report X-ray diffraction, Raman and infrared spectroscopic data that provide, to our knowledge, the first evidence for the terrestrial occurrence of any higher-pressure polymorph of olivine: we find ringwoodite included in a diamond from Juína, Brazil. The water-rich nature of this inclusion, indicated by infrared absorption, along with the preservation of the ringwoodite, is direct evidence that, at least locally, the transition zone is hydrous, to about 1 weight per cent. The finding also indicates that some kimberlites must have their primary sources in this deep mantle region.

SELECTION OF CITATIONS
SEARCH DETAIL
...