Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Breed Sci ; 67(4): 382-392, 2017 Sep.
Article in English | MEDLINE | ID: mdl-29085248

ABSTRACT

Phytoene synthase (PSY) is one of the key regulatory enzyme on the biosynthesis and accumulation of carotenoid in citrus fruits. The transcriptional diversity of PSY is mainly attributed to the structural variation in promoter region among PSY alleles. In aim to clarify how this transcriptional diversity is regulated among them, PSY alleles responsible for carotenoid biosynthesis in the fruits are characterized and their promoter sequences were compared. Based on gene structure and expression pattern of PSY homologues on the clementine mandarin genome sequence, PSY alleles responsible for carotenoid biosynthesis are derived from a single locus in the scaffold 6. AG mapping population possessed four PSY alleles derived from parent lines of A255 and G434, and their F1 individuals with PSY-g2 allele tended to have low transcription level. From sequence comparison of their promoter regions, the cis-motif alternation from MYBPZM to RAV1AAT might be a candidate to influence the transcription level. Among the ancestral pedigree varieties of AG mapping population, the transcription level of PSY correlated with genotypes of MYBPZM and RAV1AAT motifs in the promoter region of PSY alleles, so that homozygous genotype of MYBPZM showed higher transcription level while heterozygous genotype of MYBPZM and RAV1AAT showed lower transcription level.

2.
J Exp Bot ; 63(2): 871-86, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21994171

ABSTRACT

In the present study, to investigate the mechanisms regulating carotenoid accumulation in citrus, a culture system was set up in vitro with juice sacs of three citrus varieties, Satsuma mandarin (Citrus unshiu Marc.), Valencia orange (Citrus sinensis Osbeck), and Lisbon lemon (Citrus limon Burm.f.). The juice sacs of all the three varieties enlarged gradually with carotenoid accumulation. The changing patterns of carotenoid content and the expression of carotenoid metabolic genes in juice sacs in vitro were similar to those ripening on trees in the three varieties. Using this system, the changes in the carotenoid content and the expression of carotenoid metabolic genes in response to environmental stimuli were investigated. The results showed that carotenoid accumulation was induced by blue light treatment, but was not affected by red light treatment in the three varieties. Different regulation of CitPSY expression, which was up-regulated by blue light while unaffected by red light, led to different changes in carotenoid content in response to these two treatments in Satsuma mandarin and Valencia orange. In all three varieties, increases in carotenoid content were observed with sucrose and mannitol treatments. However, the accumulation of carotenoid in the two treatments was regulated by distinct mechanisms at the transcriptional level. With abscisic acid (ABA) treatment, the expression of the genes investigated in this study was up-regulated in Satsuma mandarin and Lisbon lemon, indicating that ABA induced its own biosynthesis at the transcriptional level. This feedback regulation of ABA led to decreases in carotenoid content. With gibberellin (GA) treatment, carotenoid content was significantly decreased in the three varieties. Changes in the expression of genes related to carotenoid metabolism varied among the three varieties in response to GA treatment. These results provided insights into improving carotenoid content and composition in citrus during fruit maturation.


Subject(s)
Carotenoids/metabolism , Citrus/metabolism , Gene Expression Regulation, Plant/genetics , Abscisic Acid/metabolism , Beverages/analysis , Carotenoids/analysis , Carotenoids/genetics , Citrus/drug effects , Citrus/genetics , Citrus/radiation effects , Fruit/drug effects , Fruit/genetics , Fruit/metabolism , Fruit/radiation effects , Gibberellins/metabolism , Light , Mannitol/metabolism , Plant Growth Regulators/metabolism , Plant Proteins/genetics , RNA, Messenger/genetics , RNA, Plant/genetics , Species Specificity , Sucrose/metabolism
3.
Plant Sci ; 183: 131-42, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22195586

ABSTRACT

Polyembryony, in which multiple somatic nucellar cell-derived embryos develop in addition to the zygotic embryo in a seed, is common in the genus Citrus. Previous genetic studies indicated polyembryony is mainly determined by a single locus, but the underlying molecular mechanism is still unclear. As a step towards identification and characterization of the gene or genes responsible for nucellar embryogenesis in Citrus, haplotype-specific physical maps around the polyembryony locus were constructed. By sequencing three BAC clones aligned on the polyembryony haplotype, a single contiguous draft sequence consisting of 380 kb containing 70 predicted open reading frames (ORFs) was reconstructed. Single nucleotide polymorphism genotypes detected in the sequenced genomic region showed strong association with embryo type in Citrus, indicating a common polyembryony locus is shared among widely diverse Citrus cultivars and species. The arrangement of the predicted ORFs in the characterized genomic region showed high collinearity to the genomic sequence of chromosome 4 of Vitis vinifera and linkage group VI of Populus trichocarpa, suggesting that the syntenic relationship among these species is conserved even though V. vinifera and P. trichocarpa are non-apomictic species. This is the first study to characterize in detail the genomic structure of an apomixis locus determining adventitious embryony.


Subject(s)
Apomixis/genetics , Citrus/genetics , Populus/genetics , Seeds/genetics , Synteny , Vitis/genetics , Base Sequence , Chromosomes, Artificial, Bacterial , Citrus/embryology , DNA, Plant/analysis , Genome, Plant , Genomics , Haplotypes , Molecular Sequence Data , Open Reading Frames , Polymorphism, Single Nucleotide , Seeds/embryology , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...