Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 10(6)2022 Jun 11.
Article in English | MEDLINE | ID: mdl-35740409

ABSTRACT

Sulfated polysaccharides of red marine microalgae have recently gained much attention for biomedical applications due to their anti-inflammatory and antioxidant properties. However, their low mechanical properties limit their use in tissue engineering. Herein, to enhance the mechanical properties of the sulfated polysaccharide produced by the red marine microalga, Porphyridium sp. (PS), it was integrated with the fluorenylmethoxycarbonyl diphenylalanine (FmocFF) peptide hydrogelator. Transparent, stable hydrogels were formed when mixing the two components at a 1:1 ratio in three different concentrations. Electron microscopy showed that all hydrogels exhibited a nanofibrous structure, mimicking the extracellular matrix. Furthermore, the hydrogels were injectable, and tunable mechanical properties were obtained by changing the hydrogel concentration. The composite hydrogels allowed the sustained release of curcumin which was controlled by the change in the hydrogel concentration. Finally, the hydrogels supported MC3T3-E1 preosteoblasts viability and calcium deposition. The synergy between the sulfated polysaccharide, with its unique bioactivities, and FmocFF peptide, with its structural and mechanical properties, bears a promising potential for developing novel tunable scaffolds for tissue engineering that may allow cell differentiation into various lineages.

2.
Int J Biol Macromol ; 145: 1171-1179, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-31730985

ABSTRACT

The sulfated polysaccharides of red microalgae have attracted increasing attention in recent years due to their unique rheological and bioactivities. Todate, most studies are devoted to the polysaccharide of the marine species Porphyridium sp., with limited information about that of the brackish water- Dixoniella grisea and the freshwater- Porphyridium aerugineum. We therefore conducted a comparative study of the two less explored sulfated polysaccharides, emphasizing their similarities and differences in composition, physical properties and biocompatibility. Both polysaccharides were found to be composed of 6-8 monosaccharides, predominantly xylose. Sulfur content was 0.8% for P. aerugineum and 1.6% for D. grisea. Solutions of both polysaccharides were highly viscous and exhibited shear thinning and weak gel behavior. Both were found to be stable in an alkaline environment, whereas in an acidic environment the viscosity of the polysaccharide of the brackish water species increased while that of the freshwater species decreased. Both exhibited a similar morphology, having a porous fibrous structure with a rough amorphous surface. By complementing previous studies on the Porphyridium sp. polysaccharide, we have established a sound basis for elucidating the structure/function relationships that in turn, will promote the development of innovative applications for the biotech industries for pharmaceutics, food and drug-delivery.


Subject(s)
Microalgae/chemistry , Polysaccharides/chemistry , Porphyridium/chemistry , Rhodophyta/chemistry , Sulfates/chemistry , Chemical Phenomena , Monosaccharides , Rheology , Sugars/analysis , Viscosity , Xylose
3.
Carbohydr Polym ; 152: 658-664, 2016 Nov 05.
Article in English | MEDLINE | ID: mdl-27516316

ABSTRACT

The cell-wall sulfated polysaccharide of the marine red microalga Porphyridium sp. is a high molecular weight biopolymer that has potential for use as a platform for metal complexation for various applications. This paper describes the structural and rheological characterization and antibacterial activity of the polysaccharide in combination with Zn(2+) (Zn-PS). SAXS and rheology studies indicate that with the addition of ZnCl2 to the sulfated polysaccharide the only change was the increase in viscosity in the entangled regime. The antibacterial activity of Zn-PS solutions was more potent than that of the native polysaccharide against Gram-negative and Gram-positive bacteria. The synergy between the bioactivities of Zn(2+) (which is a key player in wound healing and is active against variety of pathogens) and the unique bioactivities of the polysaccharide (e.g., anti-inflammatory) indicates promising potential for the development of novel products for the pharmaceutical and cosmetics industries.


Subject(s)
Anti-Bacterial Agents , Gram-Negative Bacteria/growth & development , Gram-Positive Bacteria/growth & development , Microalgae/chemistry , Polysaccharides , Rhodophyta/chemistry , Zinc , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Cosmetics/chemistry , Cosmetics/isolation & purification , Cosmetics/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Polysaccharides/pharmacology , Zinc/chemistry , Zinc/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...