Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 3316, 2022 02 28.
Article in English | MEDLINE | ID: mdl-35228662

ABSTRACT

The new coronavirus, SARS-CoV-2, caused the COVID-19 pandemic, characterized by its high rate of contamination, propagation capacity, and lethality rate. In this work, we approach the use of phthalocyanines as an inhibitor of SARS-CoV-2, as they present several interactive properties of the phthalocyanines (Pc) of Cobalt (CoPc), Copper (CuPc) and without a metal group (NoPc) can interact with SARS-CoV-2, showing potential be used as filtering by adsorption on paints on walls, masks, clothes, and air conditioning filters. Molecular modeling techniques through Molecular Docking and Molecular Dynamics were used, where the target was the external structures of the virus, but specifically the envelope protein, main protease, and Spike glycoprotein proteases. Using the g_MM-GBSA module and with it, the molecular docking studies show that the ligands have interaction characteristics capable of adsorbing the structures. Molecular dynamics provided information on the root-mean-square deviation of the atomic positions provided values between 1 and 2.5. The generalized Born implicit solvation model, Gibbs free energy, and solvent accessible surface area approach were used. Among the results obtained through molecular dynamics, it was noticed that interactions occur since Pc could bind to residues of the active site of macromolecules, demonstrating good interactions; in particular with CoPc. Molecular couplings and free energy showed that S-gly active site residues interacted strongly with phthalocyanines with values ​​of - 182.443 kJ/mol (CoPc), 158.954 kJ/mol (CuPc), and - 129.963 kJ/mol (NoPc). The interactions of Pc's with SARS-CoV-2 may predict some promising candidates for antagonists to the virus, which if confirmed through experimental approaches, may contribute to resolving the global crisis of the COVID-19 pandemic.


Subject(s)
COVID-19 , Cobalt/chemistry , Coordination Complexes/chemistry , Copper/chemistry , Isoindoles/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2/chemistry , Viral Proteins/chemistry , Humans
3.
J Mol Model ; 27(3): 80, 2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33575832

ABSTRACT

Herein, we present the results of our study on the thermodynamic properties of the isomers of butanol (n-butanol, 2-butanol, i-butanol, and t-butanol) to evaluate their thermodynamic potential as a complementary biofuel and/or substitute for ethanol and gasoline. The Gaussian09W software was used to perform molecular geometry optimization calculations using density functional theory with the B3lyp hybrid function using the base set 6-311++g(d,p) and the compound methods G3, G4, and CBS-QB3. Calculations of the fundamental frequency of the molecules were performed to obtain the molecular vibration modes for the respective frequencies. These calculations provided thermodynamic parameters such as the entropy, enthalpy, and specific molar heat at constant pressure, all as a function of the temperature. The parameter values obtained by each method were compared to the experimental values available in the literature. The results showed good accuracy, especially those obtained at the B3lyp/6-311++g(d,p) level for n-butanol. The error between the theoretical and experimental values for the combustion enthalpy of n-butanol was less than 4% at 298.15 K; due to the good prediction of its thermodynamic properties, we used n-butanol as a model for the prediction of other thermodynamic properties. We started a molecular docking study of four ligands, namely, n-butanol, ethanol, propanol, heptane, isooctane, and methanol interacting with butanol isomers. The highest values of affinity energy found were for N-butanol. The possible formation of hydrogen bonds, associations by means of London forces, hydrogen, and alkyl interactions were analyzed. n-Butanol was added to ethanol-gasoline mixtures in the temperature range of 298.15 to 600 K and the results suggest that n-butanol has a higher calorific value than gasoline-ethanol mixtures in G30E, G40E, G50E, G60E, G70E, G80E, G90E, and E100 blends. As such, n-butanol releases greater amounts of heat during combustion and is thus a viable alternative to biofuels.

SELECTION OF CITATIONS
SEARCH DETAIL
...