Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Genome Biol ; 25(1): 139, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802856

ABSTRACT

Weeds are attractive models for basic and applied research due to their impacts on agricultural systems and capacity to swiftly adapt in response to anthropogenic selection pressures. Currently, a lack of genomic information precludes research to elucidate the genetic basis of rapid adaptation for important traits like herbicide resistance and stress tolerance and the effect of evolutionary mechanisms on wild populations. The International Weed Genomics Consortium is a collaborative group of scientists focused on developing genomic resources to impact research into sustainable, effective weed control methods and to provide insights about stress tolerance and adaptation to assist crop breeding.


Subject(s)
Genomics , Plant Weeds , Plant Weeds/genetics , Genomics/methods , Weed Control/methods , Genome, Plant , Crops, Agricultural/genetics , Herbicide Resistance/genetics , Plant Breeding/methods
2.
Mol Biol Evol ; 40(8)2023 08 03.
Article in English | MEDLINE | ID: mdl-37603463

ABSTRACT

Understanding the evolutionary factors that impact the genetic architecture of traits is a central goal of evolutionary genetics. Here, we investigate how quantitative trait variation accumulated over time in populations that colonized a novel environment. We compare the genetic architecture of flowering time in Arabidopsis populations from the drought-prone Cape Verde Islands and their closest outgroup population from North Africa. We find that trait polygenicity is severely reduced in the island populations compared to the continental North African population. Further, trait architectures and reconstructed allelic histories best fit a model of strong directional selection in the islands in accord with a Fisher-Orr adaptive walk. Consistent with this, we find that large-effect variants that disrupt major flowering time genes (FRI and FLC) arose first, followed by smaller effect variants, including ATX2 L125F, which is associated with a 4-day reduction in flowering time. The most recently arising flowering time-associated loci are not known to be directly involved in flowering time, consistent with an omnigenic signature developing as the population approaches its trait optimum. Surprisingly, we find no effect in the natural population of EDI-Cvi-0 (CRY2 V367M), an allele for which an effect was previously validated by introgression into a Eurasian line. Instead, our results suggest the previously observed effect of the EDI-Cvi-0 allele on flowering time likely depends on genetic background, due to an epistatic interaction. Altogether, our results provide an empirical example of the effects demographic history and selection has on trait architecture.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Africa, Northern , Alleles , Arabidopsis/genetics , Biological Evolution , Demography , Arabidopsis Proteins/genetics
3.
Mol Biol Evol ; 40(3)2023 03 04.
Article in English | MEDLINE | ID: mdl-36788455

ABSTRACT

Energy production and metabolism are intimately linked to ecological and environmental constraints across the tree of life. In plants, which depend on sunlight to produce energy, the link between primary metabolism and the environment is especially strong. By governing CO2 uptake for photosynthesis and transpiration, leaf pores, or stomata, couple energy metabolism to the environment and determine productivity and water-use efficiency (WUE). Although evolution is known to tune physiological traits to the local environment, we lack knowledge of the specific links between molecular and evolutionary mechanisms that shape this process in nature. Here, we investigate the evolution of stomatal conductance and WUE in an Arabidopsis population that colonized an island with a montane cloud scrubland ecosystem characterized by seasonal drought and fog-based precipitation. We find that stomatal conductance increases and WUE decreases in the colonizing population relative to its closest outgroup population from temperate North Africa. Genome-wide association mapping reveals a polygenic basis of trait variation, with a substantial contribution from a nonsynonymous single-nucleotide polymorphism in MAP KINASE 12 (MPK12 G53R), which explains 35% of the phenotypic variance in WUE in the island population. We reconstruct the spatially explicit evolutionary history of MPK12 53R on the island and find that this allele increased in frequency in the population due to positive selection as Arabidopsis expanded into the harsher regions of the island. Overall, these findings show how adaptation shaped quantitative eco-physiological traits in a new precipitation regime defined by low rainfall and high humidity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Ecosystem , Genome-Wide Association Study , Arabidopsis Proteins/genetics , Plant Leaves , Photosynthesis/genetics , Water/metabolism , Genomics , Droughts
4.
Pathogens ; 11(10)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36297189

ABSTRACT

Although the SARS-CoV-2 virus has been detected in wastewater from several countries, monitoring its presence in other water matrices is still limited. This study aimed to evaluate the presence of this virus in natural and drinking water over one year of monitoring (2021). A survey of viral RNA was carried out by RT-qPCR in concentrated samples of surface water, groundwater, and drinking water from different regions of Portugal. SARS-CoV-2 RNA-quantified in genomic copies per liter (gc/L) of sampled water-was not detected in groundwater, but was detected and quantified in samples of surface water (two out of 43; 8035 and 23,757 gc/L) and in drinking water (one out of 43 samples; 7463 gc/L). The study also detected and quantified Norovirus RNA, intending to confirm the use of this enteric virus to assess variations in fecal matter throughout the sampling campaign. The samples positive for SARS-CoV-2 RNA also had the highest concentrations of Norovirus RNA-including the drinking water sample, which proved negative for fecal enteric bacteria (FIB). These results indicate that, to protect human health, it is advisable to continue monitoring these viruses, and noroviruses as fecal indicators (FI) as well-especially in low-flow water bodies that receive wastewater.

5.
Sci Adv ; 8(20): eabm9385, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35584228

ABSTRACT

Most well-characterized cases of adaptation involve single genetic loci. Theory suggests that multilocus adaptive walks should be common, but these are challenging to identify in natural populations. Here, we combine trait mapping with population genetic modeling to show that a two-step process rewired nutrient homeostasis in a population of Arabidopsis as it colonized the base of an active stratovolcano characterized by extremely low soil manganese (Mn). First, a variant that disrupted the primary iron (Fe) uptake transporter gene (IRT1) swept quickly to fixation in a hard selective sweep, increasing Mn but limiting Fe in the leaves. Second, multiple independent tandem duplications occurred at NRAMP1 and together rose to near fixation in the island population, compensating the loss of IRT1 by improving Fe homeostasis. This study provides a clear case of a multilocus adaptive walk and reveals how genetic variants reshaped a phenotype and spread over space and time.

6.
Nat Commun ; 13(1): 1461, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35304466

ABSTRACT

Understanding how populations adapt to abrupt environmental change is necessary to predict responses to future challenges, but identifying specific adaptive variants, quantifying their responses to selection and reconstructing their detailed histories is challenging in natural populations. Here, we use Arabidopsis from the Cape Verde Islands as a model to investigate the mechanisms of adaptation after a sudden shift to a more arid climate. We find genome-wide evidence of adaptation after a multivariate change in selection pressures. In particular, time to flowering is reduced in parallel across islands, substantially increasing fitness. This change is mediated by convergent de novo loss of function of two core flowering time genes: FRI on one island and FLC on the other. Evolutionary reconstructions reveal a case where expansion of the new populations coincided with the emergence and proliferation of these variants, consistent with models of rapid adaptation and evolutionary rescue.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Flowers/genetics , MADS Domain Proteins/genetics , Mutation
7.
Environ Manage ; 69(1): 111-127, 2022 01.
Article in English | MEDLINE | ID: mdl-34859264

ABSTRACT

Water quality monitoring is a fundamental tool in the management of freshwater resources. The purpose of monitoring is to provide meaningful quality data for local action planning and catchment-wide decision making. The assessment of water quality is crucial to guarantee the efficient operation of the Water Treatment Plants (WTPs), promoting health conditions and contributing for a more sustainable urban water cycle. In accordance, the objective of this study was to evaluate key target chemical and microbiological water quality parameters, some of them already monitored within Portuguese/EU legal framework and others still not regulated, but with environmental and human heath relevance. A local monitoring database model, using a 6-year period (from 2014 to 2019) of water quality data, regarding water samples collected on representative sampling locations covering the freshwater abstraction sites, conventional WTPs and distribution network was assessed. This work provides new knowledge regarding occurrence and seasonal behaviour for both microbiological and chemical water quality parameters, essential to understand/manage the water supply system. Additionally, relationships between the target variables were also assessed. Particularly, strong correlations were identified between TOC and THMs formation at distribution network (r = 0.69; p ≤ 0.001); nitrates were the water quality parameter that revealed the best correlation between surface water source and treated water (r = 0.81; p ≤ 0.001), suggesting that treatment yield/performance is dependent on surface water load. The local and continuous monitoring of water systems are crucial to implement new approaches to guarantee the best quality of drinking water throughout the supply system.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Water Purification , Environmental Monitoring , Humans , Portugal , Seasons , Water Pollutants, Chemical/analysis , Water Quality , Water Supply
8.
Microorganisms ; 8(5)2020 May 19.
Article in English | MEDLINE | ID: mdl-32438739

ABSTRACT

Hepatitis E virus (HEV) is a non-enveloped single-stranded positive-sense RNA virus, belonging to the Hepeviridae family, resistant to environmental conditions, and transmitted by the consumption of contaminated water. This virus is responsible for both sporadic and epidemic outbreaks, leading to thousands of infections per year in several countries, and is thus considered an emerging disease in Europe and Asia. This study refers to a survey in Portugal during 2019, targeting the detection and eventual quantification of enteric viruses in samples from surface and drinking water. Samples positive for HEV RNA were recurrently found by reverse transcription quantitative PCR (RT-qPCR), in both types of matrix. The infectivity of these samples was evaluated in cultured Vero E6 cells and RNA from putative viruses produced in cultures evidencing cytopathic effects and was subjected to RT-qPCR targeting HEV genomic RNA. Our results evidenced the existence of samples positive either for HEV RNA (77.8% in surface water and 66.7% in drinking water) or for infectious HEV (23.0% in surface water and 27.7% in drinking water). These results highlight the need for effective virological control of water for human consumption and activities.

9.
Proc Natl Acad Sci U S A ; 114(20): 5213-5218, 2017 05 16.
Article in English | MEDLINE | ID: mdl-28473417

ABSTRACT

Over the past 20 y, many studies have examined the history of the plant ecological and molecular model, Arabidopsis thaliana, in Europe and North America. Although these studies informed us about the recent history of the species, the early history has remained elusive. In a large-scale genomic analysis of African A. thaliana, we sequenced the genomes of 78 modern and herbarium samples from Africa and analyzed these together with over 1,000 previously sequenced Eurasian samples. In striking contrast to expectations, we find that all African individuals sampled are native to this continent, including those from sub-Saharan Africa. Moreover, we show that Africa harbors the greatest variation and represents the deepest history in the A. thaliana lineage. Our results also reveal evidence that selfing, a major defining characteristic of the species, evolved in a single geographic region, best represented today within Africa. Demographic inference supports a model in which the ancestral A. thaliana population began to split by 120-90 kya, during the last interglacial and Abbassia pluvial, and Eurasian populations subsequently separated from one another at around 40 kya. This bears striking similarities to the patterns observed for diverse species, including humans, implying a key role for climatic events during interglacial and pluvial periods in shaping the histories and current distributions of a wide range of species.


Subject(s)
Arabidopsis/genetics , Genomics/methods , Africa , Africa South of the Sahara , Base Sequence , Biological Evolution , Europe , Evolution, Molecular , Genetic Variation/genetics , Genetics, Population/methods , Genome, Plant/genetics , Haplotypes/genetics , Phylogeny , Principal Component Analysis
10.
Oncotarget ; 7(2): 1973-83, 2016 Jan 12.
Article in English | MEDLINE | ID: mdl-26675378

ABSTRACT

Nicotinamide adenine dinucleotide (NAD) is a cofactor in redox reactions and a substrate for NAD-consuming enzymes, such as PARPs and sirtuins. As cancer cells have increased NAD requirements, the main NAD salvage enzymes in humans, nicotinamide phosphoribosyltransferase (NAMPT) and nicotinate phosphoribosyltransferase (NAPRT), are involved in the development of novel anti-cancer therapies. Knowledge of the expression patterns of both genes in tissues and tumors is critical for the use of nicotinic acid (NA) as cytoprotective in therapies using NAMPT inhibitors. Herein, we provide a comprehensive study of NAPRT and NAMPT expression across human tissues and tumor cell lines. We show that both genes are widely expressed under normal conditions and describe the occurrence of novel NAPRT transcripts. Also, we explore some of the NAPRT gene expression mechanisms. Our findings underline that the efficiency of NA in treatments with NAMPT inhibitors is dependent on the knowledge of the expression profiles and regulation of both NAMPT and NAPRT.


Subject(s)
Alternative Splicing , Cytokines/genetics , DNA Methylation , Gene Expression Regulation, Neoplastic , Mutation/genetics , Neoplasms/genetics , Nicotinamide Phosphoribosyltransferase/genetics , Pentosyltransferases/genetics , Humans , Neoplasms/pathology , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...