ABSTRACT
Coffee has been for decades the most commercialized food product and most widely consumed beverage in the world, with over 600 billion cups served per year. Before coffee cherries can be traded and processed into a final industrial product, they have to undergo postharvest processing on farms, which have a direct impact on the cost and quality of a coffee. Three different methods can be used for transforming the coffee cherries into beans, known as wet, dry, and semi-dry methods. In all these processing methods, a spontaneous fermentation is carried out in order to eliminate any mucilage still stuck to the beans and helps improve beverage flavor by microbial metabolites. The microorganisms responsible for the fermentation (e.g., yeasts and lactic acid bacteria) can play a number of roles, such as degradation of mucilage (pectinolytic activity), inhibition of mycotoxin-producing fungi growth, and production of flavor-active components. The use of starter cultures (mainly yeast strains) has emerged in recent years as a promising alternative to control the fermentation process and to promote quality development of coffee product. However, scarce information is still available about the effects of controlled starter cultures in coffee fermentation performance and bean quality, making it impossible to use this technology in actual field conditions. A broader knowledge about the ecology, biochemistry, and molecular biology could facilitate the understanding and application of starter cultures for coffee fermentation process. This review provides a comprehensive coverage of these issues, while pointing out new directions for exploiting starter cultures in coffee processing.
Subject(s)
Coffee/chemistry , Fermentation , Food Handling/methods , Beverages , Food Microbiology , Fungi , Humans , TasteABSTRACT
In this study, the potential use of Pichia fermentans YC5.2 as a starter culture to conduct controlled coffee bean fermentations during on-farm wet processing was investigated. Inoculated fermentations were conducted with or without the addition of 2% (w/v) sucrose, and the resultant microbial growth and metabolism, bean chemistry and beverage quality were compared with spontaneous (control) fermentation. In both inoculated treatments, P. fermentans prevailed over indigenous microbiota and a restricted microbial composition was observed at the end of fermentation process. The inoculation also increased the production of specific volatile aroma compounds (e.g., ethanol, acetaldehyde, ethyl acetate and isoamyl acetate) and decreased the production of lactic acid during the fermentation process. Sucrose supplementation did not significantly interfere with the growth and frequency of P. fermentans YC5.2 inoculum but maintained high levels of wild bacteria population and lactic acid production similar to the spontaneous process. In roasted beans, the content of sugars and organic acids were statistically (p<0.05) similar for all the treatments. However, the inoculated fermentations were shown to influence the volatile fraction of roasted coffee beans by increasing the concentration of yeast-derived metabolites compared to control. Sensory analysis of coffee beverages demonstrated that the use of the YC5.2 strain was favorable for the production of high-quality coffees with distinctive characteristics, e.g., intense perception of 'vanilla' taste and 'floral' aromas. In conclusion, the use of P. fermentans YC5.2 in coffee processing was shown to be a viable alternative to control the fermentation step and to ensure consistent quality of finished products.