Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ Comput Sci ; 8: e849, 2022.
Article in English | MEDLINE | ID: mdl-35494797

ABSTRACT

Bots have become active contributors in maintaining open-source repositories. However, the definitions of bot activity in open-source software vary from a more lenient stance encompassing every non-human contributions vs frameworks that cover contributions from tools that have autonomy or human-like traits (i.e., Devbots). Understanding which of those definitions are being used is essential to enable (i) reliable sampling of bots and (ii) fair comparison of their practical impact in, e.g., developers' productivity. This paper reports on an empirical study composed of both quantitative and qualitative analysis of bot activity. By analysing those two bot definitions in an existing dataset of bot commits, we see that only 10 out of 54 listed tools (mainly dependency management) comply with the characteristics of Devbots. Moreover, five of those Devbots have similar patterns of contributions over 93 projects, such as similar proportions of merged pull-requests and days until issues are closed. Our analysis also reveals that most projects (77%) experiment with more than one bot before deciding to adopt or switch between bots. In fact, a thematic analysis of developers' comments in those projects reveal factors driving the discussions about Devbot adoption or removal, such as the impact of the generated noise and the needed adaptation in development practices within the project.

2.
Amino Acids ; 53(8): 1241-1256, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34251525

ABSTRACT

The antimicrobial peptides Ocellatin-LB1, -LB2 and -F1, isolated from frogs, are identical from residue 1 to 22, which correspond to the -LB1 sequence, whereas -LB2 carries an extra N and -F1 additional NKL residues at their C-termini. Despite the similar sequences, previous investigations showed different spectra of activities and biophysical investigations indicated a direct correlation between both membrane-disruptive properties and activities, i.e., ocellatin-F1 > ocellatin-LB1 > ocellatin-LB2. This study presents experimental evidence as well as results from theoretical studies that contribute to a deeper understanding on how these peptides exert their antimicrobial activities and how small differences in the amino acid composition and their secondary structure can be correlated to these activity gaps. Solid-state NMR experiments allied to the simulation of anisotropic NMR parameters allowed the determination of the membrane topologies of these ocellatins. Interestingly, the extra Asn residue at the Ocellatin-LB2 C-terminus results in increased topological flexibility, which is mainly related to wobbling of the helix main axis as noticed by molecular dynamics simulations. Binding kinetics and thermodynamics of the interactions have also been assessed by Surface Plasmon Resonance and Isothermal Titration Calorimetry. Therefore, these investigations allowed to understand in atomic detail the relationships between peptide structure and membrane topology, which are in tune within the series -F1 > > -LB1 ≥ -LB2, as well as how peptide dynamics can affect membrane topology, insertion and binding.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Cell Membrane/drug effects , Animals , Anura , Calorimetry/methods , Kinetics , Magnetic Resonance Spectroscopy/methods , Molecular Dynamics Simulation , Surface Plasmon Resonance , Thermodynamics
3.
Langmuir ; 27(13): 8248-56, 2011 Jul 05.
Article in English | MEDLINE | ID: mdl-21657261

ABSTRACT

Surface tension and isothermal titration calorimetry (ITC) were used to determine the critical micelle concentration (cmc) of the zwitterionic amidosulfobetaine surfactants ASB-14 and ASB-16 (linear-alkylamidopropyldimethylammoniopropanosulfonates) at 25 °C. The cmc and the heat of micellization were determined from 15 to 75 °C by ITC for both surfactants. The increase in temperature caused significant changes in the enthalpy and in the entropy of micellization, with small changes in the standard Gibbs energy (ΔG(mic)), which is consistent to an enthalpy−entropy compensation with a compensatory temperature of 311 K (ASB-14) and 314 K (ASB-16). In the studied temperature range, the heat capacity of micellization (ΔC(p)(mic)) was essentially constant. The experimental ΔC(p)(mic) was lower than that expected if only hydrophobic interactions were considered, suggesting that polar interactions at the head groups are of significant importance in the thermodynamics of micelle formation by these surfactants. Indeed, a NMR NOESY spectrum showed NOEs that are improbable to occur within the same monomer, resulting from interactions at the polar head groups involving more than one monomer. The ITC and NMR results indicate a tilt in the polar headgroup favoring the polar interactions. We have also observed COSY correlations typical of dipolar interactions that could be recovered with the partial alignment of the molecule in solution, which results in an anisotropic tumbling. The anisotropy suggested an ellipsoidal shape of the micelles, which results in a positive magnetic susceptibility, and ultimately in orientation induced by the magnetic field. Such an ellipsoidal shape was confirmed from results obtained by SAXS experiments that revealed aggregation numbers of 108 and 168 for ASB-14 and ASB-16 micelles, respectively. This study characterizes an interesting micelle system that can be used in the study of membrane proteins by solution NMR spectroscopy.


Subject(s)
Betaine/analogs & derivatives , Membrane Proteins/chemistry , Surface-Active Agents/chemistry , Thermodynamics , Betaine/chemistry , Calorimetry , Magnetic Resonance Spectroscopy , Micelles , Models, Molecular , Molecular Structure , Solubility , Surface Tension
SELECTION OF CITATIONS
SEARCH DETAIL
...