Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nutr Cancer ; 74(3): 1097-1105, 2022.
Article in English | MEDLINE | ID: mdl-34085572

ABSTRACT

An alternative to reduce the undesirable effects of antineoplastic agents has been the combination of classical treatments with nutritional strategies aimed at reducing systemic toxicity without decreasing the antitumor activity of already used drugs. Within this context, this study evaluated the possible reduction of toxicity when cisplatin treatment is combined with watermelon pulp juice supplementation in C57BL/6 mice with melanoma. Watermelon is a fruit rich in vitamins, minerals, proteins, lycopene, carotene, and xanthophylls, which has shown effectiveness in the treatment of cardiovascular diseases, weight loss, urinary infections, gout, hypertension, and mutagenicity. The following parameters were analyzed: animal survival, bone marrow genotoxicity, serum creatinine and urea, histopathological features of the tumor tissue, tumor weight and volume, and weight of non-tumor tissues (kidney, liver, spleen, heart, and lung). The results showed that watermelon had no antitumor effect but reduced the toxicity of cisplatin, as demonstrated by an increase in the number of bone marrow cells and a decrease in serum creatinine and urea levels. The data suggest that watermelon pulp juice can be an alternative for reducing the side effects of antineoplastic agents.


Subject(s)
Antineoplastic Agents , Citrullus , Melanoma , Animals , Antineoplastic Agents/toxicity , Cisplatin/toxicity , Creatinine , Mice , Mice, Inbred C57BL , Urea
2.
J Inorg Biochem ; 182: 9-17, 2018 05.
Article in English | MEDLINE | ID: mdl-29407869

ABSTRACT

The aim of this study was to evaluate the antitumor efficiency of chemotherapy with cisplatin alone and incorporated into europium(III)-doped yttrium vanadate nanoparticles functionalized with 3­chloropropyltrimethoxysilane with folic acid and without folic acid in a syngeneic mouse melanoma model. Histopathological, biochemical and genotoxic analyses of treated animals were performed to assess the toxicity of treatments. The treatment of the animals with cisplatin alone and the nanoparticles functionalized with cisplatin at a dose of 5 mg/kg b.w. for 5 days reduced tumor weight about 86% and 65%, respectively. Histopathological analysis showed lower mean frequency of mitoses in tumor tissue of the groups receiving cisplatin alone (90% reduction) and the nanoparticles functionalized with cisplatin (70% reduction) compared to the tumor control group. A reduction in body and liver weight and an increase in serum creatinine and urea levels were observed in animals treated with CDDP, but not in those receiving the nanoparticles functionalized with cisplatin. Genotoxicity assessment by the comet assay revealed lower frequencies of DNA damage in animals treated with the nanoparticles functionalized with cisplatin (mean score = 140.80) compared to those treated with cisplatin alone (mean score = 231.80). Marked toxic effects were observed in animals treated with cisplatin alone, while treatment with the nanoparticles functionalized with cisplatin showed no toxicity. Moreover, folic acid in the inorganic nanoparticles reduced the genotoxicity of cisplatin in the bone marrow micronucleus test (10 ±â€¯1.4 and 40 ±â€¯0.0 micronucleus, respectively). These results demonstrate the antitumor efficiency and significantly reduced systemic toxicity of the nanoparticles compared to CDDP.


Subject(s)
Cisplatin/toxicity , Europium/pharmacology , Nanoparticles/chemistry , Yttrium/pharmacology , Animals , Cell Line, Tumor , Comet Assay , DNA Damage/drug effects , Europium/chemistry , Folic Acid/chemistry , Heart/drug effects , Kidney/drug effects , Liver/drug effects , Lung/drug effects , Male , Mice , Mice, Inbred C57BL , Micronucleus Tests , Spleen/drug effects , Yttrium/chemistry
3.
Food Chem Toxicol ; 101: 114-120, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28088491

ABSTRACT

Persea americana Mill., commonly known as avocado, is a tree native to Central America that is widely used as a food source and for the treatment of diseases. This plant has various biological properties such as analgesic, anti-inflammatory and total cholesterol-lowering activity. In view of its pharmacological potential, we conducted a toxicogenetic study of the fruit pulp oil of P. americana (PAO) and investigated its influence on genotoxicity induced by methyl methanesulfonate (MMS) and doxorubicin. V79 cells and Swiss mice were used for the assays. The results showed no genotoxic effects of PAO in the in vitro or in vivo test systems. However, the highest PAO dose tested led to an increase in the levels of aspartate aminotransferase, indicating hepatic/tissue damage. This effect may be related to high concentrations of palmitic acid, the main component of PAO. Furthermore, PAO was effective in reducing the chromosome damage induced by MMS and doxorubicin. These results contribute to the safety assessment of PAO as a medicinal plant for human use.


Subject(s)
Chromosome Aberrations/drug effects , DNA Damage/drug effects , Fruit/chemistry , Genomic Instability/drug effects , Persea/chemistry , Plant Extracts/toxicity , Toxicogenetics/methods , Animals , Antibiotics, Antineoplastic/toxicity , Aspartate Aminotransferases/metabolism , Biological Assay/methods , Cell Survival/drug effects , Cells, Cultured , Cricetulus , Doxorubicin/toxicity , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Gas Chromatography-Mass Spectrometry/methods , Humans , Lung/cytology , Lung/drug effects , Lung/metabolism , Male , Methyl Methanesulfonate/toxicity , Mice , Micronucleus Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...