Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 53(4): 801-6, 2001 Jan 05.
Article in English | MEDLINE | ID: mdl-18968169

ABSTRACT

The Pt-Ir microelectrode modified through one step electropolymerization is proposed for the isocitrate amperometric biosensor construction. The enzyme (isocitrate dehydrogenase-ICDH), coenzyme (NADP(+)) and mediator (Meldola's Blue) were immobilized onto the microelectrode surface in one step from a PIPES buffer solution containing pyrrole. The optimized experimental conditions were 25 cycles of cyclic voltammetric in a solution containing 3.58 10(-5) mol l(-1) of mediator, 3.51 10(-4) mol l(-1) of coenzyme and 2.68 U ml(-1) of enzyme. In contrast to the biosensor for isocitrate reported in literature, just one enzyme was immobilized and no coenzyme addition in the solution of analysis was necessary. Catalytic currents were proportional to the isocitrate concentration between 7.7 10(-6) and 1.04 10(-4) mol l(-1), showing good repeatability. The detection limit of the proposed biosensor was 3.50 10(-6) mol l(-1), the response time was lower than 20 s, the lifetime was about 30 determinations and no significant interference of sugars and citric acid was verified. Orange juice samples were analysed by both methodology biosensor and spectrophotometric commercial kit, and the obtained results presented a good correlation. The data demonstrated that the developed biosensor is suitable for isocitrate determination in orange juice without matrix interferences.

2.
Talanta ; 50(3): 661-7, 1999 Oct.
Article in English | MEDLINE | ID: mdl-18967757

ABSTRACT

A potentiometric flow injection (FI) system was developed for the acetylsalicylic acid (ASA) determination in drugs, without previous treatment. The tubular potentiometric electrode for salicylate (SA) was based on tricaprylyl-trimethyl-ammonium-salicylate (aliquat-salicylate) as the ion-exchanger, supported on poly(ethylene-co-vinyl-acetate) (EVA) matrix and applied directly onto a conducting support. The standards and samples were freshly prepared in ethanol solution (0.10 mol l(-1) Tris-SO(4) buffer, pH 8.0, containing 0.25 mol l(-1) Na(2)SO(4) and 8.0% v/v ethanol) to facilitate the dissolution of ASA and were injected directly into the system. The SA formed due to the on-line alkaline hydrolysis of alcoholic ASA solution, with 0.50 mol l(-1) NaOH (coil, 50 cm length), was monitored by the tubular electrode after neutralization with 0.25 mol l(-1) H(2)SO(4). A solution of 0.10 mol l(-1) Tris-SO(4) buffer (pH 8.0), containing 0.25 mol l(-1) Na(2)SO(4) was employed as carrier. In optimized conditions (flow rate of 2.1 ml min(-1) and volume of injection of 150 mul), the tubular electrode showed a linear response to ASA in the concentration range between 4.0x10(-3) and 4.0x10(-2) mol l(-1). A conversion factor of ASA to SA of 85% occurs in these conditions with an increase of about 130% in the signal to the system with on-line hydrolysis (three-channel) in comparison to the system without (one-channel). The response time of the electrode was about 5 s with an analytical frequency of 28 samples per h and a relative standard deviation (R.S.D.) of 2.1% for 30 successive injections. Determinations of ASA in tablet samples by the proposed method exhibited relative differences of 1.0-3.5%, compared to the official method of the British Pharmacopoeia. The useful lifetime of the sensor was greater than 1 month, in continuous use.

SELECTION OF CITATIONS
SEARCH DETAIL
...