Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Thromb Haemost ; 19(5): 1319-1330, 2021 05.
Article in English | MEDLINE | ID: mdl-33587773

ABSTRACT

BACKGROUND: Heparanase (HPSE) is the only known mammalian enzyme that can degrade heparan sulfate. Heparan sulfate proteoglycans are essential components of the glycocalyx, and maintain physiological barriers between the blood and endothelial cells. HPSE increases during sepsis, which contributes to injurious glyocalyx degradation, loss of endothelial barrier function, and mortality. OBJECTIVES: As platelets are one of the most abundant cellular sources of HPSE, we sought to determine whether HPSE expression and activity increases in human platelets during clinical sepsis. We also examined associations between platelet HPSE expression and clinical outcomes. PATIENTS/METHODS: Expression and activity of HPSE was determined in platelets isolated from septic patients (n = 59) and, for comparison, sex-matched healthy donors (n = 46) using complementary transcriptomic, proteomic, and functional enzymatic assays. Septic patients were followed for the primary outcome of mortality, and clinical data were captured prospectively for septic patients. RESULTS: The mRNA expression of HPSE was significantly increased in platelets isolated from septic patients. Ribosomal footprint profiling, followed by [S35] methionine labeling assays, demonstrated that HPSE mRNA translation and HPSE protein synthesis were significantly upregulated in platelets during sepsis. While both the pro- and active forms of HPSE protein increased in platelets during sepsis, only the active form of HPSE protein significantly correlated with sepsis-associated mortality. Consistent with transcriptomic and proteomic upregulation, HPSE enzymatic activity was also increased in platelets during sepsis. CONCLUSIONS: During clinical sepsis HPSE, translation, and enzymatic activity are increased in platelets. Increased expression of the active form of HPSE protein is associated with sepsis-associated mortality.


Subject(s)
Blood Platelets/enzymology , Glucuronidase/metabolism , Sepsis , Endothelial Cells , Glucuronidase/genetics , Humans , Proteomics
2.
Int J Parasitol ; 36(2): 165-73, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16337632

ABSTRACT

Platelet-activating factor is a phospholipid mediator that exhibits a wide variety of physiological and pathophysiological effects, including induction of inflammatory response, chemotaxis and cellular differentiation. Trypanosoma cruzi, the etiological agent of Chagas' disease, is transmitted by triatomine insects and while in the triatomine midgut the parasite differentiates from a non-infective epimastigote stage into the pathogenic trypomastigote metacyclic form. We have previously demonstrated that platelet activating factor triggers in vitro cell differentiation of T. cruzi. Here we show a platelet activating factor-like activity isolated from lipid extract of T. cruzi epimastigotes incubated in the presence of [14C]acetate. Trypanosoma cruzi-platelet activating factor-like lipid induced the aggregation of rabbit platelets, which was prevented by platelet activating factor-acetylhydrolase. Mouse macrophage infection by T. cruzi was stimulated when epimastigotes were kept for 5 days in the presence of T. cruzi-platelet activating factor, before interacting with the macrophages. The differentiation of epimastigotes into metacyclic trypomastigotes was also triggered by T. cruzi-platelet activating factor. These effects were abrogated by a platelet activating factor antagonist, WEB 2086. Polyclonal antibody raised against mouse platelet activating factor receptor showed labelling for T. cruzi epimastigotes using immunoblotting and immunofluorescence assays. These data suggest that T. cruzi contain the components of an autocrine platelet activating factor-like ligand-receptor system that modulates cell differentiation towards the infectious stage.


Subject(s)
Macrophages/parasitology , Platelet Activating Factor/analysis , Protozoan Proteins/analysis , Trypanosoma cruzi/chemistry , Animals , Blotting, Western/methods , Fluorescent Antibody Technique , Life Cycle Stages , Mice , Platelet Activating Factor/pharmacology , Platelet Aggregation , Protozoan Proteins/pharmacology , Rabbits , Trypanosoma cruzi/growth & development
3.
FASEB J ; 17(1): 73-5, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12424228

ABSTRACT

Trypanosoma cruzi, the protozoan that causes Chagas' heart disease, invades endothelial cells in vitro by activating the B2 kinin receptor (B2R). Here, we demonstrate that mice infected with trypomastigotes develop potent edema after treatment with the angiotensin-converting enzyme (ACE) (or kininase II) inhibitor captopril. Experiments performed with specific kinin receptor (B2R/B1R) antagonists and knockout mice revealed that the early-phase (3-h) edema is mediated by the constitutive B2R, whereas the late-phase (24-h) response depends on stimulation of the up-regulated B1R. Given previous evidence that parasite invasion of cells expressing B2R is potentiated by captopril, we investigated the prerequisites for in vitro infection of Chinese hamster ovary cells overexpressing either B1R or B2R, human umbilical vein endothelial cells activated by lipopolysaccharide, and neonatal rat cardiomyocytes. Our results indicate that captopril potentiates parasite invasion regardless of the kinin (B2/B1) activation pathways, whereas DL-2-mercaptomethyl-3-guanidino-ethylthiopropanoic acid (MGTA), an inhibitor of kininase I (carboxypeptidase M/N), selectively decreases parasite infectivity for B1R-expressing cells. These data suggest that formation of the B1R agonist, i.e., [des-Arg] kinins, critically depends on the processing action of kininase I, here proposed as a potential pathogenesis cofactor. Collectively, our data suggest that fluctuations in the levels of kininases may modulate parasite infectivity and pathological outcome in Chagas' disease.


Subject(s)
Chagas Disease/etiology , Edema/parasitology , Heart/parasitology , Receptors, Bradykinin/metabolism , Trypanosoma cruzi/pathogenicity , Animals , Animals, Newborn , CHO Cells , Cells, Cultured , Chagas Disease/metabolism , Cricetinae , Edema/metabolism , Endothelium, Vascular/parasitology , Extremities/parasitology , Kinetics , Lipopolysaccharides/pharmacology , Lysine Carboxypeptidase/physiology , Mice , Models, Biological , Receptor, Bradykinin B1 , Receptor, Bradykinin B2 , Receptors, Bradykinin/physiology , Trypanosoma cruzi/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...