Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 19(5): 6863-76, 2014 May 23.
Article in English | MEDLINE | ID: mdl-24858272

ABSTRACT

The pharmacological effects on the cardiovascular system of yangambin, a lignan isolated from Ocotea duckei Vattimo (Lauraceae), were studied in rats using combined functional and biochemical approaches. In non-anaesthetized rats, yangambin (1, 5, 10, 20, 30 mg/kg, i.v.) induced hypotension (-3.5 ± 0.2; -7.1 ± 0.8; -8.9 ± 1.3; -14 ± 2.3, -25.5% ± 2.6%, respectively) accompanied by tachycardia (5.9 ± 0.5; 5.9 ± 1.6; 8.8 ± 1.4; 11.6, 18.8% ± 3.4%, respectively). In isolated rat atria, yangambin (0.1 µM-1 mM) had very slight negative inotropic (Emax = 35.6% ± 6.4%) and chronotropic effects (Emax = 10.2% ± 2.9%). In endothelium-intact rat mesenteric artery, yangambin (0.1 µM-1 mM) induced concentration-dependent relaxation (pD2 = 4.5 ± 0.06) of contractions induced by phenylephrine and this effect was not affected by removal of the endothelium. Interestingly, like nifedipine, the relaxant effect induced by yangambin was more potent on the contractile response induced by KCl 80 mM (pD2 = 4.8 ± 0.05) when compared to that induced by phenylephrine. Furthermore, yangambin inhibited CaCl2-induced contractions in a concentration-dependent manner. This lignan also induced relaxation (pD2 = 4.0 ± 0.04) of isolated arteries pre-contracted with S(-)-Bay K 8644. In fura-2/AM-loaded myocytes of rat mesenteric arteries, yangambin inhibited the Ca2+ signal evoked by KCl 60 mM. In conclusion, these results suggest that the hypotensive effect of yangambin is probably due to a peripheral vasodilatation that involves, at least, the inhibition the Ca2+ influx through voltage-gated Ca2+ channels.


Subject(s)
Calcium/metabolism , Furans/pharmacology , Hypotension/chemically induced , Lignans/pharmacology , Vasodilator Agents/pharmacology , Animals , Blood Pressure/drug effects , Dose-Response Relationship, Drug , Endothelium, Vascular/drug effects , Heart Atria/drug effects , In Vitro Techniques , Male , Mesenteric Artery, Superior/drug effects , Muscle, Smooth, Vascular/drug effects , Phenylephrine/pharmacology , Potassium Chloride/pharmacology , Rats, Wistar , Tachycardia/chemically induced
2.
Eur J Pharmacol ; 627(1-3): 251-7, 2010 Feb 10.
Article in English | MEDLINE | ID: mdl-19903465

ABSTRACT

The present study was designed to investigate the contribution of endothelial cell caveolae to vascular relaxation in aortas from a normotensive (2K) and renal hypertensive (2K-1C) rat. For that purpose, concentration-effect curves to acetylcholine were constructed in 2K and 2K-1C intact endothelium aortic rings, in the absence or in the presence of the caveolae disassembler methyl-beta-ciclodextrin. The potency (pD(2)) and the maximum relaxant effect to acetylcholine were greater in 2K than in 2K-1C aortas. Methyl-beta-ciclodextrin reduced the pD(2) in 2K and the maximum relaxant effect in both 2K and 2K-1C. The quantification of the caveolae number by electronic microscopy has shown a larger number of caveolae in 2K than in 2K-1C endothelial cells, which was reduced by methyl-beta-ciclodextrin in both 2K and 2K-1C. The production of NO stimulated with acetylcholine was greater in 2K than in 2K-1C endothelial cells, and this effect was impaired by methyl-beta-ciclodextrin in both 2K and 2K-1C. The cytosolic Ca(2+) concentration ([Ca(2+)]c) was simultaneously measured in endothelial and smooth muscle cells stimulated with acetylcholine by confocal image of aortic slices. Acetylcholine produced a greater [Ca(2+)]c increase in 2K than in 2K-1C endothelial cells, which response was inhibited by methyl-beta-ciclodextrin only in 2K cells. In smooth muscle cells the reduction of [Ca(2+)]c was higher in 2K than in 2K-1C. This effect was inhibited by methyl-beta-ciclodextrin only in 2K cells. Taken together, our results suggest that the decreased number of caveolae in the endothelial cells from 2K-1C rat aortas is involved in the impaired effect of acetylcholine on [Ca(2+)]c and NO.


Subject(s)
Acetylcholine/pharmacology , Aorta/drug effects , Caveolae/metabolism , Endothelial Cells/pathology , Hypertension/pathology , Hypertension/physiopathology , Vasodilation/drug effects , Animals , Aorta/metabolism , Aorta/pathology , Aorta/physiopathology , Calcium/metabolism , Caveolae/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelial Cells/ultrastructure , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Flow Cytometry , Hypertension/metabolism , In Vitro Techniques , Microscopy, Confocal , Microscopy, Electron , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Nitric Oxide/biosynthesis , Rats
3.
Eur J Pharmacol ; 574(2-3): 172-8, 2007 Nov 28.
Article in English | MEDLINE | ID: mdl-17689524

ABSTRACT

The aim of this study was to investigate the vasorelaxant effect induced by diosgenin in superior mesenteric rings. In rings pre-contracted with phenylephrine (10 microM), diosgenin caused concentration-dependent relaxations [EC(50) = (3.3 +/- 1.2) x 10(- 4)M, E(max) = 94.2 +/- 2.6 %]. Vascular relaxation induced by diosgenin was significantly inhibited after removal of the endothelium (E(max) = 46 +/- 8.8%, p < 0.001) or after pre-treatment of the rings with N-nitro-L-arginine methyl esther (l-NAME) 100 or 300 microM (E(max) = 35.3 +/- 4%; 28.1 +/- 3.3%, respectively, p < 0.001), atropine 1 microM (E(max) = 24.6 +/- 3.4%, p < 0.001), hydroxocobalamin 30 microM (E(max) = 54.0 +/- 9.6%, p < 0.001), 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ) 10 microM (E(max) = 46.0 +/- 8.0%, p < 0.001) or indomethacin 1 microM (E(max) = 22.6 +/- 11.8%, p < 0.001). Vasorelaxation evoked by diosgenin was significantly inhibited after pre-treatment of preparations with both selective and non-selective inhibitors of large conductance Ca(2+)-activated K(+) (BK(Ca)) channels, iberiotoxin 100 nM or tetraethylammonium (TEA) 1mM, respectively (E(max) = 62.5 +/- 9.1%; 65.7 +/- 1.1%, p < 0.001). Conversely, in endothelium-denuded vessels, none of BK(Ca) channel blockers modified the relaxant effect induced by diosgenin. In mesenteric endothelial cells loaded with FURA-2 diosgenin was able to increase intracellular calcium concentrations, which were significantly decreased by atropine 1 microM. In addition, in isolated mesenteric rings, diosgenin induced marked increase in nitric oxide (NO) levels, which was completely abolished after functional endothelium removal. The results obtained here demonstrated that diosgenin-induced relaxation appears to involve endothelial muscarinic receptor activation with increase in intracellular calcium concentrations and consequent release of endothelium-derived relaxing factors (EDRFs), mainly NO and cyclooxygenase derivatives, which activate BK(Ca) channels. Nevertheless, further studies are necessary to clearly elucidate residual endothelium-independent relaxation induced by diosgenin.


Subject(s)
Diosgenin/pharmacology , Mesenteric Artery, Superior/drug effects , Vasodilation/drug effects , Vasodilator Agents/pharmacology , Animals , Calcium/metabolism , Dose-Response Relationship, Drug , Endothelium-Dependent Relaxing Factors/physiology , Large-Conductance Calcium-Activated Potassium Channels/physiology , Male , Mesenteric Artery, Superior/physiology , Nitric Oxide/physiology , Phenylephrine/pharmacology , Potassium Channel Blockers/pharmacology , Prostaglandin-Endoperoxide Synthases/physiology , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...