ABSTRACT
We report on the quantum electrodynamical analog of a Sagnac phase induced by the fast rotation of a neutral nanoparticle onto atomic waves propagating in its vicinity. The quantum vacuum Sagnac phase is a geometric Berry phase proportional to the angular velocity of rotation. The persistence of a noninertial effect into the inertial frame is also analogous to the Aharonov-Bohm effect. Here, a rotation confined to a restricted domain of space gives rise to an atomic phase even though the interferometer is at rest with respect to an inertial frame. By taking advantage of a plasmon resonance, we show that the magnitude of the induced phase can be close to the sensitivity limit of state of the art interferometers. The quantum vacuum Sagnac atomic phase is a geometric footprint of a dynamical Casimir-like effect.
ABSTRACT
Optical tweezers have become a powerful tool for basic and applied research in cell biology. Here, we describe an experimentally verified theory for the trapping forces generated by optical tweezers based on first principles that allows absolute calibration. For pedagogical reasons, the steps that led to the development of the theory over the past 15 years are outlined. The results are applicable to a broad range of microsphere radii, from the Rayleigh regime to the ray optics one, for different polarizations and trapping heights, including all commonly employed parameter domains. Protocols for implementing absolute calibration are given, explaining how to measure all required experimental parameters, and including a link to an applet for stiffness calculations.
Subject(s)
Models, Theoretical , Optical Tweezers , Optics and Photonics , CalibrationABSTRACT
We argue that the appropriate variable to study a nontrivial geometry dependence of the Casimir force is the lateral component of the Casimir force, which we evaluate between two corrugated metallic plates outside the validity of the proximity-force approximation. The metallic plates are described by the plasma model, with arbitrary values for the plasma wavelength, the plate separation, and the corrugation period, the corrugation amplitude remaining the smallest length scale. Our analysis shows that in realistic experimental situations the proximity-force approximation overestimates the force by up to 30%.