Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Circulation ; 148(14): 1099-1112, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37602409

ABSTRACT

BACKGROUND: Cardiac reprogramming is a technique to directly convert nonmyocytes into myocardial cells using genes or small molecules. This intervention provides functional benefit to the rodent heart when delivered at the time of myocardial infarction or activated transgenically up to 4 weeks after myocardial infarction. Yet, several hurdles have prevented the advancement of cardiac reprogramming for clinical use. METHODS: Through a combination of screening and rational design, we identified a cardiac reprogramming cocktail that can be encoded in a single adeno-associated virus. We also created a novel adeno-associated virus capsid that can transduce cardiac fibroblasts more efficiently than available parental serotypes by mutating posttranslationally modified capsid residues. Because a constitutive promoter was needed to drive high expression of these cell fate-altering reprogramming factors, we included binding sites to a cardiomyocyte-restricted microRNA within the 3' untranslated region of the expression cassette that limits expression to nonmyocytes. After optimizing this expression cassette to reprogram human cardiac fibroblasts into induced cardiomyocyte-like cells in vitro, we also tested the ability of this capsid/cassette combination to confer functional benefit in acute mouse myocardial infarction and chronic rat myocardial infarction models. RESULTS: We demonstrated sustained, dose-dependent improvement in cardiac function when treating a rat model 2 weeks after myocardial infarction, showing that cardiac reprogramming, when delivered in a single, clinically relevant adeno-associated virus vector, can support functional improvement in the postremodeled heart. This benefit was not observed with GFP (green fluorescent protein) or a hepatocyte reprogramming cocktail and was achieved even in the presence of immunosuppression, supporting myocyte formation as the underlying mechanism. CONCLUSIONS: Collectively, these results advance the application of cardiac reprogramming gene therapy as a viable therapeutic approach to treat chronic heart failure resulting from ischemic injury.


Subject(s)
MicroRNAs , Myocardial Infarction , Rats , Mice , Humans , Animals , Dependovirus/genetics , Myocytes, Cardiac/metabolism , Myocardial Infarction/therapy , Myocardial Infarction/drug therapy , MicroRNAs/genetics , MicroRNAs/metabolism , Genetic Therapy/methods , Green Fluorescent Proteins/genetics , Cellular Reprogramming , Fibroblasts/metabolism
2.
Commun Biol ; 5(1): 1169, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36329259

ABSTRACT

Prostaglandin analogs are first-line treatments for open angle glaucoma and while effective at lowering intraocular pressure, they are undermined by patient non-compliance, causing atrophy of the optic nerve and severe visual impairment. Herein, we evaluate the safety and efficacy of a recombinant adeno-associated viral vector-mediated gene therapy aimed at permanently lowering intraocular pressure through de novo biosynthesis of prostaglandin F2α within the anterior chamber. This study demonstrated a dose dependent reduction in intraocular pressure in normotensive Brown Norway rats maintained over 12-months. Crucially, therapy could be temporarily halted through off-type riboswitch activation, reverting intraocular pressure to normal. Longitudinal multimodal imaging, electrophysiology, and post-mortem histology revealed the therapy was well tolerated at low and medium doses, with no major adverse effects to anterior chamber health, offering a promising alternative to current treatment strategies leading to clinically relevant reductions in intraocular pressure without the need for adherence to a daily treatment regimen.


Subject(s)
Glaucoma, Open-Angle , Glaucoma , Ocular Hypertension , Rats , Animals , Glaucoma, Open-Angle/drug therapy , Ocular Hypertension/drug therapy , Prostaglandins/therapeutic use , Glaucoma/genetics , Glaucoma/therapy , Genetic Therapy
3.
EBioMedicine ; 85: 104314, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36374771

ABSTRACT

BACKGROUND: Batten disease is characterized by cognitive and motor impairment, retinal degeneration, and seizures leading to premature death. Recent studies have shown efficacy for a gene therapy approach for CLN7 Batten disease. This gene therapy approach is promising to treat cognitive and motor impairment, but is not likely to delay vision loss. Additionally, the natural progression of retinal degeneration in CLN7 Batten disease patients is not well-known. METHODS: We performed visual examinations on five patients with CLN7 Batten disease and found that patients were far progressed in degeneration within their first five years of life. To better understand the disease progression, we characterized the retina of a preclinical mouse model of CLN7 Batten disease, through the age at which mice present with paralysis and premature death. FINDINGS: We found that this preclinical model shows signs of photoreceptor to bipolar synaptic defects early, and displays rod-cone dystrophy with late loss of bipolar cells. This vision loss could be followed not only via histology, but using clinical live imaging similar to that used in human patients. INTERPRETATION: Natural history studies of rare paediatric neurodegenerative conditions are complicated by the rapid degeneration and limited availability of patients. Characterization of degeneration in the preclinical model allows for future experiments to better understand the mechanisms underlying the retinal disease progression in order to find therapeutics to treat patients, as well as to evaluate these therapeutic options for future human clinical trials. FUNDING: Van Sickle Family Foundation Inc., NIHP30EY030413, Morton Fichtenbaum Charitable Trust and 5T32GM131945-03.


Subject(s)
Neuronal Ceroid-Lipofuscinoses , Retinal Degeneration , Humans , Child , Animals , Mice , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/therapy , Neuronal Ceroid-Lipofuscinoses/pathology , Retinal Degeneration/etiology , Retinal Degeneration/therapy , Retina/pathology , Genetic Therapy , Vision Disorders/therapy , Disease Progression , Disease Models, Animal
4.
Biochem J ; 476(19): 2909-2926, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31537632

ABSTRACT

The mechanism of generation of factor VIIa, considered the initiating protease in the tissue factor-initiated extrinsic limb of blood coagulation, is obscure. Decreased levels of plasma VIIa in individuals with congenital factor IX deficiency suggest that generation of VIIa is dependent on an activation product of factor IX. Factor VIIa activates IX to IXa by a two-step removal of the activation peptide with cleavages occurring after R191 and R226. Factor IXaα, however, is IX cleaved only after R226, and not after R191. We tested the hypothesis that IXaα activates VII with mutant IX that could be cleaved only at R226 and thus generate only IXaα upon activation. Factor IXaα demonstrated 1.6% the coagulant activity of IXa in a contact activation-based assay of the intrinsic activation limb and was less efficient than IXa at activating factor X in the presence of factor VIIIa. However, IXaα and IXa had indistinguishable amidolytic activity, and, strikingly, both catalyzed the cleavage required to convert VII to VIIa with indistinguishable kinetic parameters that were augmented by phospholipids, but not by factor VIIIa or tissue factor. We propose that IXa and IXaα participate in a pathway of reciprocal activation of VII and IX that does not require a protein cofactor. Since both VIIa and activated IX are equally plausible as the initiating protease for the extrinsic limb of blood coagulation, it might be appropriate to illustrate this key step of hemostasis as currently being unknown.


Subject(s)
Blood Coagulation/physiology , Factor IX/metabolism , Factor VII/metabolism , Factor VIIa/metabolism , Factor X/metabolism , HEK293 Cells , Humans , Kinetics , Recombinant Proteins/metabolism
5.
Cell Rep ; 27(11): 3107-3116.e3, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31189098

ABSTRACT

Throughout the CNS, interactions between pre- and postsynaptic adhesion molecules establish normal synaptic structure and function. Leucine-rich repeat (LRR) domain-containing proteins are a large family that has a diversity of ligands, and their absence can cause disease. At the first retinal synapse, the absence of LRIT3 expression leads to the disassembly of the postsynaptic glutamate signaling complex (signalplex) expressed on depolarizing bipolar cell (DBC) dendrites. The prevalent view is that assembly of the signalplex results from direct postsynaptic protein:protein interactions. In contrast, we demonstrate that LRIT3 is expressed presynaptically, in rod photoreceptors (rods), and when we restore LRIT3 expression in Lrit3-/- rods, we restore expression of the postsynaptic glutamate signalplex and rod-driven vision. Our results demonstrate that, in the retina, the LRR-containing protein LRIT3 acts as a transsynaptic organizer of the postsynaptic complex required for normal synaptic function.


Subject(s)
Glutamic Acid/metabolism , Membrane Proteins/metabolism , Synapses/metabolism , TRPM Cation Channels/metabolism , Animals , Dendrites/metabolism , Dendrites/physiology , Female , Male , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Retinal Bipolar Cells/metabolism , Retinal Bipolar Cells/physiology , Retinal Rod Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/physiology , Synapses/physiology , Synaptic Potentials
6.
Invest Ophthalmol Vis Sci ; 59(12): 4909-4920, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30347085

ABSTRACT

Purpose: Temporal and reversible control of protein expression in vivo is a central goal for many gene therapies, especially for strategies involving proteins that are detrimental to physiology if constitutively expressed. Accordingly, we explored whether protein abundance in the mouse retina could be effectively controlled using a destabilizing Escherichia coli dihydrofolate reductase (DHFR) domain whose stability is dependent on the small molecule, trimethoprim (TMP). Methods: We intravitreally injected wild-type C57BL6/J mice with an adeno-associated vector (rAAV2/2[MAX]) constitutively expressing separate fluorescent reporters: DHFR fused to yellow fluorescent protein (DHFR.YFP) and mCherry. TMP or vehicle was administered to mice via oral gavage, drinking water, or eye drops. Ocular TMP levels post treatment were quantified by LC-MS/MS. Protein abundance was measured by fundus fluorescence imaging and western blotting. Visual acuity, response to light stimulus, retinal structure, and gene expression were evaluated after long-term (3 months) TMP treatment. Results: Without TMP, DHFR.YFP was efficiently degraded in the retina. TMP achieved ocular concentrations of ∼13.6 µM (oral gavage), ∼331 nM (drinking water), and ∼636 nM (eye drops). Oral gavage and TMP eye drops stabilized DHFR.YFP as quickly as 6 hours, whereas continuous TMP drinking water could stabilize DHFR.YFP for ≥3 months. Stabilization was completely and repeatedly reversible following removal/addition of TMP in all regimens. Long-term TMP treatment had no impact on retina function/structure and had no effect on >99.9% of tested genes. Conclusions: This DHFR-based conditional system is a rapid, efficient, and reversible tool to effectively control protein expression in the retina.


Subject(s)
Folic Acid Antagonists/therapeutic use , Genetic Therapy , Genetic Vectors , Luminescent Agents/metabolism , Parvovirinae/genetics , Retina/drug effects , Tetrahydrofolate Dehydrogenase/genetics , Trimethoprim/therapeutic use , Administration, Oral , Animals , Bacterial Proteins/metabolism , Blotting, Western , Chromatography, Liquid , Dependovirus , Electroretinography , Escherichia coli/enzymology , Intravitreal Injections , Luminescent Proteins/metabolism , Mice , Mice, Inbred C57BL , Plasmids , Real-Time Polymerase Chain Reaction , Retina/metabolism , Tandem Mass Spectrometry , Tetrahydrofolate Dehydrogenase/metabolism , Visual Acuity/physiology , Red Fluorescent Protein
7.
Sci Rep ; 8(1): 11763, 2018 08 06.
Article in English | MEDLINE | ID: mdl-30082848

ABSTRACT

Vascular endothelial growth factor (VEGF) is a key mediator in the development and progression of choroidal neovascularization (CNV) in patients with wet age-related macular degeneration (AMD). As a consequence, current treatment strategies typically focus on the administration of anti-VEGF agents, such as Aflibercept (Eylea), that inhibit VEGF function. While this approach is largely successful at counteracting CNV progression, the treatment can require repetitive (i.e. monthly) intravitreal injections of the anti-VEGF agent throughout the patient's lifetime, imposing a substantial financial and medical burden on the patient. Moreover, repetitive injection of anti-VEGF agents over a period of years may encourage progression of retinal and choroidal atrophy in patients with AMD, leading to a decrease in visual acuity. Herein, we have developed a single-injection recombinant adeno-associated virus (rAAV)-based gene therapy treatment for wet AMD that prevents CNV formation through inducible over-expression of Eylea. First, we demonstrate that by incorporating riboswitch elements into the rAAV expression cassette allows protein expression levels to be modulated in vivo through oral supplementation on an activating ligand (e.g. tetracycline). We subsequently utilized this technology to modulate the intraocular concentration of Eylea following rAAV delivery, leading to nearly complete (p = 0.0008) inhibition of clinically significant CNV lesions in an established mouse model of wet AMD. The results shown in this study pave the way for the development of a personalized gene therapy strategy for the treatment of wet AMD that is substantially less invasive and more clinically adaptable than the current treatment paradigm of repetitive bolus injections of anti-VEGF agents.


Subject(s)
Choroidal Neovascularization/therapy , Dependovirus/genetics , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor A/immunology , Animals , Choroidal Neovascularization/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Genetic Therapy/methods , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Riboswitch/genetics , Riboswitch/physiology , Software , Wet Macular Degeneration/metabolism , Wet Macular Degeneration/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...