Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Electron Agric ; 187: None, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34381288

ABSTRACT

Collection of accurate and representative data from agricultural fields is required for efficient crop management. Since growers have limited available resources, there is a need for advanced methods to select representative points within a field in order to best satisfy sampling or sensing objectives. The main purpose of this work was to develop a data-driven method for selecting locations across an agricultural field given observations of some covariates at every point in the field. These chosen locations should be representative of the distribution of the covariates in the entire population and represent the spatial variability in the field. They can then be used to sample an unknown target feature whose sampling is expensive and cannot be realistically done at the population scale. An algorithm for determining these optimal sampling locations, namely the multifunctional matching (MFM) criterion, was based on matching of moments (functionals) between sample and population. The selected functionals in this study were standard deviation, mean, and Kendall's tau. An additional algorithm defined the minimal number of observations that could represent the population according to a desired level of accuracy. The MFM was applied to datasets from two agricultural plots: a vineyard and a peach orchard. The data from the plots included measured values of slope, topographic wetness index, normalized difference vegetation index, and apparent soil electrical conductivity. The MFM algorithm selected the number of sampling points according to a representation accuracy of 90% and determined the optimal location of these points. The algorithm was validated against values of vine or tree water status measured as crop water stress index (CWSI). Algorithm performance was then compared to two other sampling methods: the conditioned Latin hypercube sampling (cLHS) model and a uniform random sample with spatial constraints. Comparison among sampling methods was based on measures of similarity between the target variable population distribution and the distribution of the selected sample. MFM represented CWSI distribution better than the cLHS and the uniform random sampling, and the selected locations showed smaller deviations from the mean and standard deviation of the entire population. The MFM functioned better in the vineyard, where spatial variability was larger than in the orchard. In both plots, the spatial pattern of the selected samples captured the spatial variability of CWSI. MFM can be adjusted and applied using other moments/functionals and may be adopted by other disciplines, particularly in cases where small sample sizes are desired.

2.
Plant Biol (Stuttg) ; 11(5): 701-12, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19689778

ABSTRACT

An advanced non-invasive, field-suitable and inexpensive leaf patch clamp pressure probe for online-monitoring of the water relations of intact leaves is described. The probe measures the attenuated output patch clamp pressure, P(p), of a clamped leaf in response to an externally applied input pressure, P(clamp). P(clamp) is generated magnetically. P(p) is sensed by a pressure sensor integrated into the magnetic clamp. The magnitude of P(p) depends on the transfer function, T(f), of the leaf cells. T(f) consists of a turgor pressure-independent (related to the compression of the cuticle, cell walls and other structural elements) and a turgor pressure-dependent term. T(f) is dimensionless and assumes values between 0 and 1. Theory shows that T(f) is a power function of cell turgor pressure P(c). Concomitant P(p) and P(c) measurements on grapevines confirmed the relationship between T(f) and P(c). P(p) peaked if P(c) approached zero and assumed low values if P(c) reached maximum values. The novel probe was successfully tested on leaves of irrigated and non-irrigated grapevines under field conditions. Data show that slight changes in the microclimate and/or water supply (by irrigation or rain) are reflected very sensitively in P(p).


Subject(s)
Ecology/instrumentation , Plant Leaves/physiology , Pressure , Vitis/physiology , Water/physiology , Botany/instrumentation , Models, Biological , Patch-Clamp Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...