Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Med Inform ; 90: 58-67, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27103198

ABSTRACT

OBJECTIVE: Most preventable adverse drug events and medication errors occur during medication ordering. Medication order entry and clinical decision support are available on paper or as computerized systems. In this post-hoc analysis we investigated frequency and clinical impact of blood glucose (BG) documentation- and user-related calculation errors as well as workflow deviations in diabetes management. We aimed to compare a paper-based protocol to a computerized medication management system combined with clinical workflow and decision support. METHODS: Seventy-nine hospitalized patients with type 2 diabetes mellitus were treated with an algorithm driven basal-bolus insulin regimen. BG measurements, which were the basis for insulin dose calculations, were manually entered either into the paper-based workflow protocol (PaperG: 37 patients) or into GlucoTab(®)-a mobile tablet PC based system (CompG: 42 patients). We used BG values from the laboratory information system as a reference. A workflow simulator was used to determine user calculation errors as well as workflow deviations and to estimate the effect of errors on insulin doses. The clinical impact of insulin dosing errors and workflow deviations on hypo- and hyperglycemia was investigated. RESULTS: The BG documentation error rate was similar for PaperG (4.9%) and CompG group (4.0%). In PaperG group, 11.1% of manual insulin dose calculations were erroneous and the odds ratio (OR) of a hypoglycemic event following an insulin dosing error was 3.1 (95% CI: 1.4-6.8). The number of BG values influenced by insulin dosing errors was eightfold higher than in the CompG group. In the CompG group, workflow deviations occurred in 5.0% of the tasks which led to an increased likelihood of hyperglycemia, OR 2.2 (95% CI: 1.1-4.6). DISCUSSION: Manual insulin dose calculations were the major source of error and had a particularly strong influence on hypoglycemia. By using GlucoTab(®), user calculation errors were entirely excluded. The immediate availability and automated handling of BG values from medical devices directly at the point of care has a high potential to reduce errors. Computerized systems facilitate the safe use of more complex insulin dosing algorithms without compromising usability. In CompG group, missed or delayed tasks had a significant effect on hyperglycemia, while in PaperG group insufficient precision of documentation times limited analysis. The use of old BG measurements was clinically less relevant. CONCLUSION: Insulin dosing errors and workflow deviations led to measurable changes in clinical outcome. Diabetes management systems including decision support should address nurses as well as physicians in a computerized way. Our analysis shows that such systems reduce the frequency of errors and therefore decrease the probability of hypo- and hyperglycemia.


Subject(s)
Decision Support Systems, Clinical , Diabetes Mellitus, Type 2/drug therapy , Documentation/methods , Medical Errors , Adult , Algorithms , Humans , Insulin/administration & dosage , Paper
2.
Diabetes Technol Ther ; 17(10): 685-92, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26355756

ABSTRACT

BACKGROUND: This study investigated the efficacy, safety, and usability of standardized glycemic management by a computerized decision support system for non-critically ill hospitalized patients with type 2 diabetes on four different wards. MATERIALS AND METHODS: In this open, noncontrolled intervention study, glycemic management of 99 patients with type 2 diabetes (62% acute admissions; 41 females; age, 67±11 years; hemoglobin A1c, 65±21 mmol/mol; body mass index, 30.4±6.5 kg/m(2)) on clinical wards (Cardiology, Endocrinology, Nephrology, Plastic Surgery) of a tertiary-care hospital was guided by GlucoTab(®) (Joanneum Research GmbH [Graz, Austria] and Medical University of Graz [Graz, Austria]), a mobile decision support system providing automated workflow support and suggestions for insulin dosing to nurses and physicians. RESULTS: Adherence to insulin dosing suggestions was high (96.5% bolus, 96.7% basal). The primary outcome measure, percentage of blood glucose (BG) measurements in the range of 70-140 mg/dL, occurred in 50.2±22.2% of all measurements. The overall mean BG level was 154±35 mg/dL. BG measurements in the ranges of 60-70 mg/dL, 40-60 mg/dL, and <40 mg/dL occurred in 1.4%, 0.5%, and 0.0% of all measurements, respectively. A regression analysis showed that acute admission to the Cardiology Ward (+30 mg/dL) and preexisting home insulin therapy (+26 mg/dL) had the strongest impact on mean BG. Acute admission to other wards had minor effects (+4 mg/dL). Ninety-one percent of the healthcare professionals felt confident with GlucoTab, and 89% believed in its practicality and 80% in its ability to prevent medication errors. CONCLUSIONS: An efficacious, safe, and user-accepted implementation of GlucoTab was demonstrated. However, for optimized personalized patient care, further algorithm modifications are required.


Subject(s)
Blood Glucose/analysis , Decision Support Systems, Clinical , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Aged , Algorithms , Austria , Drug Administration Schedule , Female , Glycated Hemoglobin/analysis , Humans , Hypoglycemic Agents/administration & dosage , Inpatients , Insulin/administration & dosage , Male , Middle Aged , Software , Workflow
3.
Diabetes Technol Ther ; 17(9): 611-8, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25927357

ABSTRACT

BACKGROUND: Inpatient glucose management is based on four daily capillary blood glucose (BG) measurements. The aim was to test the capability of continuous glucose monitoring (CGM) for assessing the clinical impact and safety of basal-bolus insulin therapy in non-critically ill hospitalized patients with type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS: Eighty-four patients with T2DM (age, 68±10 years; glycosylated hemoglobin, 72±28 mmol/mol; body mass index, 31±7 kg/m(2)) were treated with basal-bolus insulin. CGM was performed with the iPro(®)2 system (Medtronic MiniMed, Northridge, CA) and calibrated retrospectively. RESULTS: A remarkable consistency between CGM and BG measurements and therapy improvement was shown over the study period of 501 patient-days. The number of CGM and BG measurements (CGM/BG) in the range from 3.9-10 mmol/L increased from 67.7%/67.2% (on Day 1) to 77.5%/78.6% (on the last day) (P<0.04). The number of low glycemic episodes (3.3 to <3.9 mmol/L) during nighttime detected by CGM was 15-fold higher, and the number of episodes >13.9 mmol/L detected by CGM during night was 12.5-fold higher than the values from the BG measurements. Ninety-nine percent of data points were in the clinically accurate or acceptable Clarke Error Grid Zones A+B, and the relative numbers of correctly identified episodes of <3.9 and >13.9 mmol/L detected by CGM (sensitivity) were 47.3% and 81.5%, respectively. CONCLUSIONS: Our data exhibit a good agreement between overall CGM and BG measurements, but there were a high number of missed hypo- and hyperglycemic episodes with BG measurements, particularly during nighttime. Overall assessment of glycemic control using CGM is feasible, whereas the use of CGM for individualized therapy decisions needs further improvement.


Subject(s)
Blood Glucose Self-Monitoring/methods , Blood Glucose/analysis , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/administration & dosage , Insulin/administration & dosage , Aged , Algorithms , Blood Glucose Self-Monitoring/instrumentation , Female , Glycated Hemoglobin/analysis , Hospitalization , Humans , Hypoglycemia/chemically induced , Male , Middle Aged , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...