Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 173(1): 100-9, 2007.
Article in English | MEDLINE | ID: mdl-17176397

ABSTRACT

* Morphological and physiological attributes were assessed to elucidate the underlying mechanisms of ozone (O(3)) sensitivity in a highly sensitive species, cutleaf coneflower (Rudbeckia laciniata var. digitata). * Foliage at the same height in the canopy on paired O(3)-sensitive and -insensitive cutleaf coneflowers was assessed for level of foliar symptoms, stomatal density, stomatal responsiveness to dynamic changes in light and leaf-to-air vapor pressure deficit (VPD), steady-state responses to light and CO(2), intrinsic transpirational efficiency, and plant water balance. * There were no morphological differences between the sensitivity types that might have contributed to greater O(3) uptake in sensitive individuals. Stomata of sensitive plants were less responsive than those of insensitive plants to experimentally increased and decreased light intensities, and to increased VPD. O(3)-insensitive plants had greater intrinsic transpirational efficiencies, greater maximum assimilation rates under saturating CO(2) and light, and greater carboxylation rates. * Different physiological attributes vary independently within an individual plant, which collectively confer sensitivity or insensitivity to O(3) injury.


Subject(s)
Ozone/metabolism , Rudbeckia/physiology , Carbon Dioxide/metabolism , Light , North Carolina , Plant Leaves/anatomy & histology , Plant Leaves/physiology , Plant Leaves/radiation effects , Plant Transpiration , Pressure , Rudbeckia/anatomy & histology , Rudbeckia/radiation effects , Water/metabolism
2.
New Phytol ; 168(3): 575-87, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16313641

ABSTRACT

High-light leaves of the evergreen herb Galax urceolata exhibit a striking color change from green to red during winter months due to anthocyanin synthesis in outermost mesophyll cells. Here we investigate three possible functions of this color change. To test the hypothesis that anthocyanins function as light attenuators, maximum photosystem II efficiency (F(v)/F(m)) of red and green leaves was measured during and after exposure to wavelengths either strongly or poorly absorbed by anthocyanin. To determine whether anthocyanins elevate radical-scavenging capacity, antioxidant activity of red and green leaves was assessed using the alpha,alpha-diphenyl-beta-picrylhydrazyl assay. Nonstructural carbohydrate levels were analyzed to test the hypothesis that anthocyanins function as a carbon sink. Declines in F(v)/F(m) under white and green light were significantly greater for green than red leaves, but were comparable under red light. Anthocyanin content positively correlated with antioxidant activity. Although levels of anthocyanins did not appear to be related to nonstructural carbohydrate concentration, high levels of sugars may be necessary for their photo-induction. Results suggest that anthocyanins function as light attenuators and may also contribute to the antioxidant pool in winter leaves.


Subject(s)
Anthocyanins/physiology , Magnoliopsida/physiology , Plant Leaves/physiology , Antioxidants/metabolism , Carbohydrates/physiology , Chlorophyll/metabolism , Cold Temperature , Free Radical Scavengers/metabolism , Light , North Carolina , Seasons , Solar System
3.
Environ Pollut ; 125(1): 53-9, 2003.
Article in English | MEDLINE | ID: mdl-12804827

ABSTRACT

Incidence and severity of visible foliar ozone injury on cutleaf coneflower (Rudbeckia laciniata L.) and crown-beard (Verbesina occidentalis Walt.) were determined along selected trails at three locations in Great Smoky Mountains National Park during the summers of 2000 and 2001: Clingmans Dome, Cherokee Orchard Road and Purchase Knob. Cutleaf coneflower exhibited a greater amount of foliar injury than crown-beard each year of the 2-year study. Incidence and severity of injury was significantly greater for cutleaf coneflower growing near the edge of the Clingmans Dome trail than in the interior of the stand. Injury was greater at Clingmans Dome than Purchase Knob (70% vs. 40% ozone-injured plants, respectively), coincident with greater ozone exposures. In contrast to Clingmans Dome, there were no differences in injury between plants growing near- and off-trail at Purchase Knob. Differences in sensitivity to ozone were not observed for crown-beard growing near the edge compared with the interior of the stand adjacent to the Cherokee Orchard Road Loop. Ozone injury was greatest on the lower leaves for both species sampled with over 95% of the injured leaves occurring on the lower 50% of the plant. This is the first report of foliar ozone injury on these plant species in situ, in the Park, illustrating the great variability in symptom expression with time, and within and between populations.


Subject(s)
Air Pollutants/adverse effects , Ozone/adverse effects , Rudbeckia/drug effects , Verbesina/drug effects , Environmental Monitoring/methods , Plant Leaves/drug effects , Tennessee
4.
Environ Pollut ; 125(1): 61-70, 2003.
Article in English | MEDLINE | ID: mdl-12804828

ABSTRACT

Visible injury caused by ozone is recorded every year in native plant species growing in Great Smoky Mountains National Park (USA). One of the most sensitive species, cutleaf coneflower (Rudbeckia laciniata L.), shows great variation in symptoms between and within populations but the causes of this variation and its ecological significance are currently unknown. This paper presents data relating to genetic variation, ozone concentrations, stomatal conductance and light (PAR) within populations. The data show that populations differ in genetic diversity, one consisting of only three genets while another was very diverse. In the former population, symptoms varied greatly within a single genet, pointing to a large micro-environmental influence. Measurements of ozone, stomatal conductance and PAR within plant canopies suggest that variation in symptom expression is unlikely to be due to differences in ozone flux and more likely to be due to variation in light. The variation in visible symptoms raises the question of what bioindicators actually indicate, and it suggests that symptoms should be interpreted with great caution until the underlying causes of that variation are fully understood.


Subject(s)
Air Pollutants/adverse effects , Environmental Monitoring/methods , Ozone/adverse effects , Rudbeckia/drug effects , Genetic Variation , Photic Stimulation , Plant Leaves/drug effects , Rudbeckia/genetics , Tennessee
5.
6.
Environ Pollut ; 108(2): 141-51, 2000 May.
Article in English | MEDLINE | ID: mdl-15092944

ABSTRACT

Field symptoms typical of ozone injury have been observed on several conifer species in Great Smoky Mountains National Park, and tropospheric ozone levels in the Park can be high, suggesting that ozone may be causing growth impairment of these plants. The objective of this research was to test the ozone sensitivity of selected conifer species under controlled exposure conditions. Seedlings of three species of conifers, Table Mountain pine (Pinus pungens), Virginia pine (Pinus virginiana), and eastern hemlock (Tsuga canadensis), were exposed to various levels of ozone in open-top chambers for one to three seasons in Great Smoky Mountains National Park in Tennessee, USA. A combination of episodic profiles (1988) and modified ambient exposure regimes (1989-92) were used. Episodic profiles simulated an average 7-day period from a monitoring station in the Park. Treatments used in 1988 were: charcoal-filtered (CF), 1.0x ambient, 2.0x ambient, and ambient air-no chamber (AA). In 1989 a 1.5x ambient treatment was added, and in 1990, additional chambers were made available, allowing a 0.5x ambient treatment to be added. Height, diameter, and foliar injury were measured most years. Exposures were 3 years for Table Mountain pine (1988-90), 3 years for hemlock (1989-91), and 1 and 2 years for three different sets of Virginia pine (1990, 1990-91, and 1992). There were no significant (p<0.05) effects of ozone on any biomass fraction for any of the species, except for older needles in Table Mountain and Virginia pine, which decreased with ozone exposure. There were also no changes in biomass allocation patterns among species due to ozone exposure, except for Virginia pine in 1990, which showed an increase in the root:shoot ratio. There was foliar injury (chlorotic mottling) in the higher two treatments (1.0x and 2.0x for Table Mountain and 2.0x for Virginia pine), but high plant-to-plant variability obscured formal statistical significance in many cases. We conclude, at least for growth in the short-term, that seedlings of these three conifer species are insensitive to ambient and elevated levels of ozone, and that current levels of ozone in the Park are probably having minimal impacts on these particular species.

7.
Oecologia ; 114(1): 11-19, 1998 Mar.
Article in English | MEDLINE | ID: mdl-28307549

ABSTRACT

Microstegium vimineum (Trin.) A. Camus, a shade-tolerant C4 grass, has spread throughout the eastern United States since its introduction in 1919. This species invades disturbed understory habitats along streambanks and surrounding mesic forests, and has become a major pest in areas such as Great Smoky Mountains National Park. The focus of this study was to characterize the photosynthetic induction responses of M. vimineum, specifically its ability to utilize low light and sunflecks, two factors that may be critical to invasive abilities and survival in the understory. In addition, we were curious about the ability of a grass with the C4 photosynthetic pathway to respond to sunflecks. Plants were grown under 25% and 50% ambient sunlight, and photosynthetic responses to both steady-state and variable light were determined. Plants grown in both 25% and 50% ambient sun became 90% light saturated between 750-850 µmol m-2 s-1; however, plants grown in 50% ambient sun had significantly higher maximum steady-state photosynthetic rates (16.09 ± 1.37 µmol m-2 s-1 vs. 12.71 ± 1.18 µmol m-2 s-1). Both groups of plants induced to 50% of the steady-state rate in 3-5 min, while it took 10-13 min to reach 90% of maximum rates, under both flashing and steady-state light. For both groups of plants, stomatal conductance during induction reached maximum rates in 6-7 min, after which rates decreased slightly. Upon return to low light, rates of induction loss and stomatal closure were very rapid in both groups of plants, but were more rapid in those grown in high light. Rapid induction and the ability to induce under flashing light may enable this species to invade and dominate mesic understory habitats, while rapid induction loss due to stomatal closure may prevent excess water loss when low light constrains photosynthesis. The C4 pathway itself does not appear to present an insurmountable barrier to the ability of this grass species to respond to sunflecks in an understory environment.

8.
Plant Physiol ; 100(2): 1020-8, 1992 Oct.
Article in English | MEDLINE | ID: mdl-16653010

ABSTRACT

Genotypic variability in vulnerability of leaf xylem to water-stress-induced cavitation was determined in four sugarcane (Saccharum sp.) clones using detached leaf segments in a hydraulic conductivity apparatus. Vulnerability curves were constructed by plotting the percentage of maximum conductivity versus leaf water potential (psi(I)) and fitting curves using a Weibull function. The psi(I) at which each clone lost 10, 50, and 80% of maximum conductivity was determined. Maximum conductivity per unit of leaf width was positively associated with metaxylem vessel diameter. The commercial clone H65-7052 exhibited the highest and the nondomesticated S. spontaneum exhibited the lowest conductivity. All four clones lost substantial conductivity at values of psi(I) less negative than -1.4 MPa, but H65-7052 was able to maintain 50% conductivity to lower psi(I) than the other clones. S. spontaneum sustained the most negative psi(I) (-1.99 MPa) before reaching the 80% conductivity loss point. Clone H69-8235 was consistently the most vulnerable to initial loss of conductivity. These vulnerability functions were used in conjunction with field measurements of psi(I) to estimate diurnal losses in leaf hydraulic conductivity under irrigated and droughted conditions. H69-8235 lost up to 50% of its conductivity during the day, even when well irrigated, and more than 80% when subjected to drought. The other clones exhibited lower conductivity losses. These losses are apparently reversed overnight by root pressure. Despite their close genetic relationships, these clones exhibited large differences in conductivity, in the vulnerability of their xylem to cavitation, and in gas exchange behavior. The potential for altering water relations by selecting for particular hydraulic characteristics is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...