Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 30(27): e202400132, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38441728

ABSTRACT

We report a series of Pd(II)nL2n coordination rings for which nuclearity is controlled by the binding angle of the corresponding bis-monodentate bridging ligands. Judicious choice of the angle within a family of rather rigid ligands allowed for the first-time to synthesize a homoleptic five-membered Pd5L10 ring that does not require any template to form. We demonstrate that control over the ring size is maintained both in the solid-, solution-, and gas-phase. Two X-ray structures of five-membered rings from ligands with ideal angles (yielding a perfect pentagonal ring) vs. suboptimal angles (resulting in a highly distorted structure) illustrate the importance of the correct ligand geometry. A mathematical model for estimating the expected ring size based on the ligand angle was derived and DFT computations show that ring-strain is the major factor determining the assembly outcome.

2.
Chemistry ; 27(39): 10048-10057, 2021 Jul 12.
Article in English | MEDLINE | ID: mdl-33979454

ABSTRACT

The development of DNA-compatible reaction methodologies is a central theme to advance DNA-encoded screening library technology. Recently, we were able to show that sulfonic acid-functionalized block copolymer micelles facilitated Brønsted acid-promoted reactions such as the Povarov reaction on DNA-coupled starting materials with minimal DNA degradation. Here, the impact of polymer composition on micelle shape, and reaction conversion was investigated. A dozen sulfonic acid-functionalized block copolymers of different molar mass and composition were prepared by RAFT polymerization and were tested in the Povarov reaction, removal of the Boc protective group, and the Biginelli reaction. The results showed trends in the polymer structure-micellar catalytic activity relationship. For instance, micelles composed of block copolymers with shorter acrylate ester chains formed smaller particles and tended to provide faster reaction kinetics. Moreover, fluorescence quenching experiments as well as circular dichroism spectroscopy showed that DNA-oligomer-conjugates, although highly water-soluble, accumulated very effectively in the micellar compartments, which is a prerequisite for carrying out a DNA-encoded reaction in the presence of polymer micelles.


Subject(s)
Micelles , Polymers , Catalysis , DNA , Polymerization
3.
ACS Comb Sci ; 22(3): 101-108, 2020 03 09.
Article in English | MEDLINE | ID: mdl-32053337

ABSTRACT

Laboratory automation strategies have vast potential for accelerating discovery processes. They enable higher efficiency and throughput for time-consuming screening procedures and reduce error-prone manual steps. Automating repetitive procedures can for instance support chemists in optimizing chemical reactions. Particularly, the technology of DNA-encoded libraries (DELs) may benefit from automation techniques, since translation of chemical reactions to DNA-tagged reactants often requires screening of multiple reaction parameters and evaluation of large numbers of reactants. Here, we describe a portable, automated system for reagent dispensing that was designed from open source materials. The system was validated by performing amide coupling of carboxylic acids to DNA-linked amine and a micelle-mediated Povarov reaction to DNA-tagged hexahydropyrroloquinolines. The latter reaction required accurate pipetting of multiple components including different solvents and a surface-active reagent. Analysis of reactions demonstrated that the robotic system achieved high accuracy comparable to experimentation by an experienced chemist with the potential of higher throughput.


Subject(s)
Amides/chemistry , Amines/chemistry , Carboxylic Acids/chemistry , Combinatorial Chemistry Techniques , DNA/chemistry , Pyrroles/chemical synthesis , Quinolines/chemical synthesis , Automation , Drug Design , Drug Evaluation, Preclinical , Molecular Structure , Pyrroles/chemistry , Quinolines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...