Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Neurochem Res ; 47(10): 3003-3011, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35708880

ABSTRACT

Dopamine is an important neuromodulator in the brain that binds to dopamine D1-like receptors (D1, D5) as well as dopamine D2-like receptors (D2, D3, D4). The D2 receptor is known to play an integral role in a variety of physiological processes including addictive behaviors, locomotion, motivation, feeding behavior, and more. It was recently reported that dopamine is a direct-acting modulator of mammalian GABA(A) receptors. To this end, we wanted to examine how the expression of the dopamine D2 gene impacts the expression of GABA(A) receptors in the brain under different dietary conditions. Adult female Drd2 wild-type (WT), heterozygous (HT), and knockout (KO) mice were given either normal or high-fat diet for a period of 30 weeks. Following this, their brains were collected for [3H] Flunitrazepam binding in order to assess GABA(A) receptor expression. A high fat diet significantly increased [3H] Flunitrazepam binding in the regions of the somatosensory cortex, striatum, and various other cortical areas within WT mice. In contrast, no effect of diet was observed in HT or KO mice. As such, HT and KO mice displayed reduced [3H] Flunitrazepam binding in these areas relative to WT mice under high-fat dietary conditions. The effect of a high-fat diet on [3H] Flunitrazepam binding is consistent with recent evidence showing increases in GABA neurotransmitter levels following a high-fat diet. We demonstrate for the first time that the expression of the D2 gene plays a prominent role in the ability of a high-fat diet to impact GABA(A) receptors in the mouse brain.


Subject(s)
Diet, High-Fat , Receptors, Dopamine D1 , Animals , Brain/metabolism , Dopamine/metabolism , Female , Flunitrazepam/metabolism , Mammals/metabolism , Mice , Mice, Knockout , Neurotransmitter Agents/metabolism , Receptors, Dopamine D1/metabolism , Receptors, GABA-A/metabolism , gamma-Aminobutyric Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...