Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Biol Cybern ; 117(4-5): 299-329, 2023 10.
Article in English | MEDLINE | ID: mdl-37306782

ABSTRACT

Advanced computer vision mechanisms have been inspired by neuroscientific findings. However, with the focus on improving benchmark achievements, technical solutions have been shaped by application and engineering constraints. This includes the training of neural networks which led to the development of feature detectors optimally suited to the application domain. However, the limitations of such approaches motivate the need to identify computational principles, or motifs, in biological vision that can enable further foundational advances in machine vision. We propose to utilize structural and functional principles of neural systems that have been largely overlooked. They potentially provide new inspirations for computer vision mechanisms and models. Recurrent feedforward, lateral, and feedback interactions characterize general principles underlying processing in mammals. We derive a formal specification of core computational motifs that utilize these principles. These are combined to define model mechanisms for visual shape and motion processing. We demonstrate how such a framework can be adopted to run on neuromorphic brain-inspired hardware platforms and can be extended to automatically adapt to environment statistics. We argue that the identified principles and their formalization inspires sophisticated computational mechanisms with improved explanatory scope. These and other elaborated, biologically inspired models can be employed to design computer vision solutions for different tasks and they can be used to advance neural network architectures of learning.


Subject(s)
Computers , Neural Networks, Computer , Animals , Vision, Ocular , Brain , Learning , Mammals
2.
Sensors (Basel) ; 23(9)2023 May 02.
Article in English | MEDLINE | ID: mdl-37177655

ABSTRACT

Conventional processing of sensory input often relies on uniform sampling leading to redundant information and unnecessary resource consumption throughout the entire processing pipeline. Neuromorphic computing challenges these conventions by mimicking biology and employing distributed event-based hardware. Based on the task of lateral auditory sound source localization (SSL), we propose a generic approach to map biologically inspired neural networks to neuromorphic hardware. First, we model the neural mechanisms of SSL based on the interaural level difference (ILD). Afterward, we identify generic computational motifs within the model and transform them into spike-based components. A hardware-specific step then implements them on neuromorphic hardware. We exemplify our approach by mapping the neural SSL model onto two platforms, namely the IBM TrueNorth Neurosynaptic System and SpiNNaker. Both implementations have been tested on synthetic and real-world data in terms of neural tunings and readout characteristics. For synthetic stimuli, both implementations provide a perfect readout (100% accuracy). Preliminary real-world experiments yield accuracies of 78% (TrueNorth) and 13% (SpiNNaker), RMSEs of 41∘ and 39∘, and MAEs of 18∘ and 29∘, respectively. Overall, the proposed mapping approach allows for the successful implementation of the same SSL model on two different neuromorphic architectures paving the way toward more hardware-independent neural SSL.


Subject(s)
Algorithms , Neural Networks, Computer , Computers , Brain , Auditory Perception
3.
PLoS Comput Biol ; 16(7): e1008020, 2020 07.
Article in English | MEDLINE | ID: mdl-32678847

ABSTRACT

Adaptation to statistics of sensory inputs is an essential ability of neural systems and extends their effective operational range. Having a broad operational range facilitates to react to sensory inputs of different granularities, thus is a crucial factor for survival. The computation of auditory cues for spatial localization of sound sources, particularly the interaural level difference (ILD), has long been considered as a static process. Novel findings suggest that this process of ipsi- and contra-lateral signal integration is highly adaptive and depends strongly on recent stimulus statistics. Here, adaptation aids the encoding of auditory perceptual space of various granularities. To investigate the mechanism of auditory adaptation in binaural signal integration in detail, we developed a neural model architecture for simulating functions of lateral superior olive (LSO) and medial nucleus of the trapezoid body (MNTB) composed of single compartment conductance-based neurons. Neurons in the MNTB serve as an intermediate relay population. Their signal is integrated by the LSO population on a circuit level to represent excitatory and inhibitory interactions of input signals. The circuit incorporates an adaptation mechanism operating at the synaptic level based on local inhibitory feedback signals. The model's predictive power is demonstrated in various simulations replicating physiological data. Incorporating the innovative adaptation mechanism facilitates a shift in neural responses towards the most effective stimulus range based on recent stimulus history. The model demonstrates that a single LSO neuron quickly adapts to these stimulus statistics and, thus, can encode an extended range of ILDs in the ipsilateral hemisphere. Most significantly, we provide a unique measurement of the adaptation efficacy of LSO neurons. Prerequisite of normal function is an accurate interaction of inhibitory and excitatory signals, a precise encoding of time and a well-tuned local feedback circuit. We suggest that the mechanisms of temporal competitive-cooperative interaction and the local feedback mechanism jointly sensitize the circuit to enable a response shift towards contra-lateral and ipsi-lateral stimuli, respectively.


Subject(s)
Computational Biology , Neurons/physiology , Olivary Nucleus/physiology , Synapses/physiology , Trapezoid Body/physiology , Acoustic Stimulation , Action Potentials , Algorithms , Animals , Auditory Pathways/physiology , Auditory Threshold , Computer Simulation , Cues , Gerbillinae , Humans , Models, Neurological , Normal Distribution , Receptors, GABA/physiology , Reproducibility of Results , Sound , Sound Localization , Superior Olivary Complex/physiology
4.
Front Neurorobot ; 14: 29, 2020.
Article in English | MEDLINE | ID: mdl-32499692

ABSTRACT

While interacting with the world our senses and nervous system are constantly challenged to identify the origin and coherence of sensory input signals of various intensities. This problem becomes apparent when stimuli from different modalities need to be combined, e.g., to find out whether an auditory stimulus and a visual stimulus belong to the same object. To cope with this problem, humans and most other animal species are equipped with complex neural circuits to enable fast and reliable combination of signals from various sensory organs. This multisensory integration starts in the brain stem to facilitate unconscious reflexes and continues on ascending pathways to cortical areas for further processing. To investigate the underlying mechanisms in detail, we developed a canonical neural network model for multisensory integration that resembles neurophysiological findings. For example, the model comprises multisensory integration neurons that receive excitatory and inhibitory inputs from unimodal auditory and visual neurons, respectively, as well as feedback from cortex. Such feedback projections facilitate multisensory response enhancement and lead to the commonly observed inverse effectiveness of neural activity in multisensory neurons. Two versions of the model are implemented, a rate-based neural network model for qualitative analysis and a variant that employs spiking neurons for deployment on a neuromorphic processing. This dual approach allows to create an evaluation environment with the ability to test model performances with real world inputs. As a platform for deployment we chose IBM's neurosynaptic chip TrueNorth. Behavioral studies in humans indicate that temporal and spatial offsets as well as reliability of stimuli are critical parameters for integrating signals from different modalities. The model reproduces such behavior in experiments with different sets of stimuli. In particular, model performance for stimuli with varying spatial offset is tested. In addition, we demonstrate that due to the emergent properties of network dynamics model performance is close to optimal Bayesian inference for integration of multimodal sensory signals. Furthermore, the implementation of the model on a neuromorphic processing chip enables a complete neuromorphic processing cascade from sensory perception to multisensory integration and the evaluation of model performance for real world inputs.

5.
Article in English | MEDLINE | ID: mdl-30814934

ABSTRACT

Adaptation is a mechanism by which cortical neurons adjust their responses according to recently viewed stimuli. Visual information is processed in a circuit formed by feedforward (FF) and feedback (FB) synaptic connections of neurons in different cortical layers. Here, the functional role of FF-FB streams and their synaptic dynamics in adaptation to natural stimuli is assessed in psychophysics and neural model. We propose a cortical model which predicts psychophysically observed motion adaptation aftereffects (MAE) after exposure to geometrically distorted natural image sequences. The model comprises direction selective neurons in V1 and MT connected by recurrent FF and FB dynamic synapses. Psychophysically plausible model MAEs were obtained from synaptic changes within neurons tuned to salient direction signals of the broadband natural input. It is conceived that, motion disambiguation by FF-FB interactions is critical to encode this salient information. Moreover, only FF-FB dynamic synapses operating at distinct rates predicted psychophysical MAEs at different adaptation time-scales which could not be accounted for by single rate dynamic synapses in either of the streams. Recurrent FF-FB pathways thereby play a role during adaptation in a natural environment, specifically in inducing multilevel cortical plasticity to salient information and in mediating adaptation at different time-scales.


Subject(s)
Adaptation, Physiological/physiology , Cerebral Cortex/cytology , Models, Neurological , Nerve Net/physiology , Neurons/physiology , Animals , Humans , Psychophysics , Synapses/physiology
6.
Front Psychol ; 9: 1455, 2018.
Article in English | MEDLINE | ID: mdl-30210382

ABSTRACT

Human articulated motion can be readily recognized robustly even from impoverished so-called point-light displays. Such sequence information is processed by separate visual processing channels recruiting different stages at low and intermediate levels of the cortical visual processing hierarchy. The different contributions that motion and form information make to form articulated, or biological, motion perception are still under investigation. Here we investigate experimentally whether and how specific spatio-temporal features, such as extrema in the motion energy or maximum limb expansion, indicated by the lateral and longitudinal extension, constrain the formation of the representations of articulated body motion. In order to isolate the relevant stimulus properties we suggest a novel masking technique, which allows to selectively impair the ankle information of the body configuration while keeping the motion of the point-light locations intact. Our results provide evidence that maxima in feature channel representations, e.g., the lateral or longitudinal extension, define elemental features to specify key poses of biological motion patterns. These findings provide support for models which aim at automatically building visual representations for the cortical processing of articulated motion by identifying temporally localized events in a continuous input stream.

7.
Front Psychol ; 8: 1303, 2017.
Article in English | MEDLINE | ID: mdl-28798717

ABSTRACT

The importance of emotions experienced by learners during their interaction with multimedia learning systems, such as serious games, underscores the need to identify sources of information that allow the recognition of learners' emotional experience without interrupting the learning process. Bodily expression is gaining in attention as one of these sources of information. However, to date, the question of how bodily expression can convey different emotions has largely been addressed in research relying on acted emotion displays. Following a more contextualized approach, the present study aims to identify features of bodily expression (i.e., posture and activity of the upper body and the head) that relate to genuine emotional experience during interaction with a serious game. In a multimethod approach, 70 undergraduates played a serious game relating to financial education while their bodily expression was captured using an off-the-shelf depth-image sensor (Microsoft Kinect). In addition, self-reports of experienced enjoyment, boredom, and frustration were collected repeatedly during gameplay, to address the dynamic changes in emotions occurring in educational tasks. Results showed that, firstly, the intensities of all emotions indeed changed significantly over the course of the game. Secondly, by using generalized estimating equations, distinct features of bodily expression could be identified as significant indicators for each emotion under investigation. A participant keeping their head more turned to the right was positively related to frustration being experienced, whereas keeping their head more turned to the left was positively related to enjoyment. Furthermore, having their upper body positioned more closely to the gaming screen was also positively related to frustration. Finally, increased activity of a participant's head emerged as a significant indicator of boredom being experienced. These results confirm the value of bodily expression as an indicator of emotional experience in multimedia learning systems. Furthermore, the findings may guide developers of emotion recognition procedures by focusing on the identified features of bodily expression.

8.
Front Neurorobot ; 11: 13, 2017.
Article in English | MEDLINE | ID: mdl-28381998

ABSTRACT

Intelligent agents, such as robots, have to serve a multitude of autonomous functions. Examples are, e.g., collision avoidance, navigation and route planning, active sensing of its environment, or the interaction and non-verbal communication with people in the extended reach space. Here, we focus on the recognition of the action of a human agent based on a biologically inspired visual architecture of analyzing articulated movements. The proposed processing architecture builds upon coarsely segregated streams of sensory processing along different pathways which separately process form and motion information (Layher et al., 2014). Action recognition is performed in an event-based scheme by identifying representations of characteristic pose configurations (key poses) in an image sequence. In line with perceptual studies, key poses are selected unsupervised utilizing a feature-driven criterion which combines extrema in the motion energy with the horizontal and the vertical extendedness of a body shape. Per class representations of key pose frames are learned using a deep convolutional neural network consisting of 15 convolutional layers. The network is trained using the energy-efficient deep neuromorphic networks (Eedn) framework (Esser et al., 2016), which realizes the mapping of the trained synaptic weights onto the IBM Neurosynaptic System platform (Merolla et al., 2014). After the mapping, the trained network achieves real-time capabilities for processing input streams and classify input images at about 1,000 frames per second while the computational stages only consume about 70 mW of energy (without spike transduction). Particularly regarding mobile robotic systems, a low energy profile might be crucial in a variety of application scenarios. Cross-validation results are reported for two different datasets and compared to state-of-the-art action recognition approaches. The results demonstrate, that (I) the presented approach is on par with other key pose based methods described in the literature, which select key pose frames by optimizing classification accuracy, (II) compared to the training on the full set of frames, representations trained on key pose frames result in a higher confidence in class assignments, and (III) key pose representations show promising generalization capabilities in a cross-dataset evaluation.

9.
Front Neurosci ; 10: 535, 2016.
Article in English | MEDLINE | ID: mdl-27909395

ABSTRACT

Biologically plausible modeling of behavioral reinforcement learning tasks has seen great improvements over the past decades. Less work has been dedicated to tasks involving contingency reversals, i.e., tasks in which the original behavioral goal is reversed one or multiple times. The ability to adjust to such reversals is a key element of behavioral flexibility. Here, we investigate the neural mechanisms underlying contingency-reversal tasks. We first conduct experiments with humans and gerbils to demonstrate memory effects, including multiple reversals in which subjects (humans and animals) show a faster learning rate when a previously learned contingency re-appears. Motivated by recurrent mechanisms of learning and memory for object categories, we propose a network architecture which involves reinforcement learning to steer an orienting system that monitors the success in reward acquisition. We suggest that a model sensory system provides feature representations which are further processed by category-related subnetworks which constitute a neural analog of expert networks. Categories are selected dynamically in a competitive field and predict the expected reward. Learning occurs in sequentialized phases to selectively focus the weight adaptation to synapses in the hierarchical network and modulate their weight changes by a global modulator signal. The orienting subsystem itself learns to bias the competition in the presence of continuous monotonic reward accumulation. In case of sudden changes in the discrepancy of predicted and acquired reward the activated motor category can be switched. We suggest that this subsystem is composed of a hierarchically organized network of dis-inhibitory mechanisms, dubbed a dynamic control network (DCN), which resembles components of the basal ganglia. The DCN selectively activates an expert network, corresponding to the current behavioral strategy. The trace of the accumulated reward is monitored such that large sudden deviations from the monotonicity of its evolution trigger a reset after which another expert subnetwork can be activated-if it has already been established before-or new categories can be recruited and associated with novel behavioral patterns.

10.
PLoS One ; 11(9): e0160868, 2016.
Article in English | MEDLINE | ID: mdl-27649387

ABSTRACT

A biologically inspired model architecture for inferring 3D shape from texture is proposed. The model is hierarchically organized into modules roughly corresponding to visual cortical areas in the ventral stream. Initial orientation selective filtering decomposes the input into low-level orientation and spatial frequency representations. Grouping of spatially anisotropic orientation responses builds sketch-like representations of surface shape. Gradients in orientation fields and subsequent integration infers local surface geometry and globally consistent 3D depth. From the distributions in orientation responses summed in frequency, an estimate of the tilt and slant of the local surface can be obtained. The model suggests how 3D shape can be inferred from texture patterns and their image appearance in a hierarchically organized processing cascade along the cortical ventral stream. The proposed model integrates oriented texture gradient information that is encoded in distributed maps of orientation-frequency representations. The texture energy gradient information is defined by changes in the grouped summed normalized orientation-frequency response activity extracted from the textured object image. This activity is integrated by directed fields to generate a 3D shape representation of a complex object with depth ordering proportional to the fields output, with higher activity denoting larger distance in relative depth away from the viewer.


Subject(s)
Form Perception , Models, Biological , Visual Perception , Algorithms , Anisotropy , Humans , Surface Properties , Visual Cortex/physiology , Visual Pathways
11.
Magn Reson Med ; 75(2): 789-800, 2016 Feb.
Article in English | MEDLINE | ID: mdl-25761576

ABSTRACT

PURPOSE: To investigate the combination of Golden Angle Radial Sparse SENSE reconstruction with image-based self-gating (SG) for deriving high-quality TPM data from radial golden angle (GA) k-space data. METHODS: In 10 healthy volunteers, a self-gated radial GA TPM sequence (TPMSG ) was compared with a prospectively triggered radial TPM acquisition with conventional respiratory (RNAV) compensation (TPMref ). Image quality and velocities were compared for different regularization strengths λ in the CS reconstruction. RESULTS: Acquisitions and retrospective self-gating was successful in all cases. Contrast in TPMSG was superior to TPMref , because the blood saturation bands could be applied with full thickness without interference with the RNAV. Velocities from both acquisitions visually showed the same motion patterns and were quantitatively highly similar (correlation 0.81-0.97 and RMSE 0.08-0.21 cm/s). Strong temporal regularization ( λ∈0.3,0.4) led to reduced velocity peaks in TPMSG . For λ=0.2, image sharpness as well as velocity peaks of TPMSG were comparable to TPMRef . CONCLUSION: The combination of Golden Angle Radial Sparse SENSE with image-based self-gating allows measurement of velocities of the myocardium with superior black-blood contrast and full coverage of the cardiac cycle.


Subject(s)
Cardiac-Gated Imaging Techniques/methods , Cardiomyopathies/physiopathology , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging, Cine/methods , Respiratory-Gated Imaging Techniques/methods , Adult , Aged , Female , Healthy Volunteers , Humans , Image Enhancement/methods , Male
12.
PLoS One ; 10(11): e0142488, 2015.
Article in English | MEDLINE | ID: mdl-26554589

ABSTRACT

The visual cortex analyzes motion information along hierarchically arranged visual areas that interact through bidirectional interconnections. This work suggests a bio-inspired visual model focusing on the interactions of the cortical areas in which a new mechanism of feedforward and feedback processing are introduced. The model uses a neuromorphic vision sensor (silicon retina) that simulates the spike-generation functionality of the biological retina. Our model takes into account two main model visual areas, namely V1 and MT, with different feature selectivities. The initial motion is estimated in model area V1 using spatiotemporal filters to locally detect the direction of motion. Here, we adapt the filtering scheme originally suggested by Adelson and Bergen to make it consistent with the spike representation of the DVS. The responses of area V1 are weighted and pooled by area MT cells which are selective to different velocities, i.e. direction and speed. Such feature selectivity is here derived from compositions of activities in the spatio-temporal domain and integrating over larger space-time regions (receptive fields). In order to account for the bidirectional coupling of cortical areas we match properties of the feature selectivity in both areas for feedback processing. For such linkage we integrate the responses over different speeds along a particular preferred direction. Normalization of activities is carried out over the spatial as well as the feature domains to balance the activities of individual neurons in model areas V1 and MT. Our model was tested using different stimuli that moved in different directions. The results reveal that the error margin between the estimated motion and synthetic ground truth is decreased in area MT comparing with the initial estimation of area V1. In addition, the modulated V1 cell activations shows an enhancement of the initial motion estimation that is steered by feedback signals from MT cells.


Subject(s)
Models, Neurological , Motion Perception/physiology , Neurons/physiology , Visual Cortex/physiology , Visual Perception/physiology , Animals , Photic Stimulation
13.
PLoS Comput Biol ; 11(10): e1004489, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26496502

ABSTRACT

The processing of a visual stimulus can be subdivided into a number of stages. Upon stimulus presentation there is an early phase of feedforward processing where the visual information is propagated from lower to higher visual areas for the extraction of basic and complex stimulus features. This is followed by a later phase where horizontal connections within areas and feedback connections from higher areas back to lower areas come into play. In this later phase, image elements that are behaviorally relevant are grouped by Gestalt grouping rules and are labeled in the cortex with enhanced neuronal activity (object-based attention in psychology). Recent neurophysiological studies revealed that reward-based learning influences these recurrent grouping processes, but it is not well understood how rewards train recurrent circuits for perceptual organization. This paper examines the mechanisms for reward-based learning of new grouping rules. We derive a learning rule that can explain how rewards influence the information flow through feedforward, horizontal and feedback connections. We illustrate the efficiency with two tasks that have been used to study the neuronal correlates of perceptual organization in early visual cortex. The first task is called contour-integration and demands the integration of collinear contour elements into an elongated curve. We show how reward-based learning causes an enhancement of the representation of the to-be-grouped elements at early levels of a recurrent neural network, just as is observed in the visual cortex of monkeys. The second task is curve-tracing where the aim is to determine the endpoint of an elongated curve composed of connected image elements. If trained with the new learning rule, neural networks learn to propagate enhanced activity over the curve, in accordance with neurophysiological data. We close the paper with a number of model predictions that can be tested in future neurophysiological and computational studies.


Subject(s)
Feedback, Physiological/physiology , Models, Neurological , Nerve Net/physiology , Reinforcement, Psychology , Visual Cortex/physiology , Visual Perception/physiology , Animals , Computer Simulation , Macaca , Memory/physiology
14.
Article in English | MEDLINE | ID: mdl-26217215

ABSTRACT

Although an action observation network and mirror neurons for understanding the actions and intentions of others have been under deep, interdisciplinary consideration over recent years, it remains largely unknown how the brain manages to map visually perceived biological motion of others onto its own motor system. This paper shows how such a mapping may be established, even if the biologically motion is visually perceived from a new vantage point. We introduce a learning artificial neural network model and evaluate it on full body motion tracking recordings. The model implements an embodied, predictive inference approach. It first learns to correlate and segment multimodal sensory streams of own bodily motion. In doing so, it becomes able to anticipate motion progression, to complete missing modal information, and to self-generate learned motion sequences. When biological motion of another person is observed, this self-knowledge is utilized to recognize similar motion patterns and predict their progress. Due to the relative encodings, the model shows strong robustness in recognition despite observing rather large varieties of body morphology and posture dynamics. By additionally equipping the model with the capability to rotate its visual frame of reference, it is able to deduce the visual perspective onto the observed person, establishing full consistency to the embodied self-motion encodings by means of active inference. In further support of its neuro-cognitive plausibility, we also model typical bistable perceptions when crucial depth information is missing. In sum, the introduced neural model proposes a solution to the problem of how the human brain may establish correspondence between observed bodily motion and its own motor system, thus offering a mechanism that supports the development of mirror neurons.

15.
Front Neurosci ; 9: 137, 2015.
Article in English | MEDLINE | ID: mdl-25941470

ABSTRACT

Event-based sensing, i.e., the asynchronous detection of luminance changes, promises low-energy, high dynamic range, and sparse sensing. This stands in contrast to whole image frame-wise acquisition by standard cameras. Here, we systematically investigate the implications of event-based sensing in the context of visual motion, or flow, estimation. Starting from a common theoretical foundation, we discuss different principal approaches for optical flow detection ranging from gradient-based methods over plane-fitting to filter based methods and identify strengths and weaknesses of each class. Gradient-based methods for local motion integration are shown to suffer from the sparse encoding in address-event representations (AER). Approaches exploiting the local plane like structure of the event cloud, on the other hand, are shown to be well suited. Within this class, filter based approaches are shown to define a proper detection scheme which can also deal with the problem of representing multiple motions at a single location (motion transparency). A novel biologically inspired efficient motion detector is proposed, analyzed and experimentally validated. Furthermore, a stage of surround normalization is incorporated. Together with the filtering this defines a canonical circuit for motion feature detection. The theoretical analysis shows that such an integrated circuit reduces motion ambiguity in addition to decorrelating the representation of motion related activations.

16.
Magn Reson Med ; 73(1): 292-8, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24478142

ABSTRACT

PURPOSE: To compare the applicability of different self-gating (SG) strategies for respiratory SG in cardiac MRI in combination with iteratively reconstructed (k-t SPARSE SENSE) cine data with low and high temporal resolution. METHODS: Eleven SG variants were compared in five volunteers by assessment of the resulting image sharpness compared with nongated reconstructions. Promising SG techniques were applied for high temporal resolution reconstructions of the heart function. RESULTS: SG was successful in all volunteers with image-based SG and the ∑||p|| technique. These approaches were also superior to gating from the respiratory bellows signal on average. Combination with k-t SPARSE SENSE enabled high temporally resolved visualization of the heart motion with free breathing. CONCLUSION: Respiratory SG can be applied for improving image sharpness. Combining SG with iterative reconstruction allows generation of high temporal resolution cine data, which reveal more details of cardiac motion.


Subject(s)
Heart/anatomy & histology , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging, Cine/methods , Pattern Recognition, Automated/methods , Respiratory-Gated Imaging Techniques/methods , Adult , Algorithms , Female , Humans , Male , Reproducibility of Results , Sensitivity and Specificity , Signal Processing, Computer-Assisted
17.
Front Psychol ; 5: 1287, 2014.
Article in English | MEDLINE | ID: mdl-25538637

ABSTRACT

The categorization of real world objects is often reflected in the similarity of their visual appearances. Such categories of objects do not necessarily form disjunct sets of objects, neither semantically nor visually. The relationship between categories can often be described in terms of a hierarchical structure. For instance, tigers and leopards build two separate mammalian categories, both of which are subcategories of the category Felidae. In the last decades, the unsupervised learning of categories of visual input stimuli has been addressed by numerous approaches in machine learning as well as in computational neuroscience. However, the question of what kind of mechanisms might be involved in the process of subcategory learning, or category refinement, remains a topic of active investigation. We propose a recurrent computational network architecture for the unsupervised learning of categorial and subcategorial visual input representations. During learning, the connection strengths of bottom-up weights from input to higher-level category representations are adapted according to the input activity distribution. In a similar manner, top-down weights learn to encode the characteristics of a specific stimulus category. Feedforward and feedback learning in combination realize an associative memory mechanism, enabling the selective top-down propagation of a category's feedback weight distribution. We suggest that the difference between the expected input encoded in the projective field of a category node and the current input pattern controls the amplification of feedforward-driven representations. Large enough differences trigger the recruitment of new representational resources and the establishment of additional (sub-) category representations. We demonstrate the temporal evolution of such learning and show how the proposed combination of an associative memory with a modulatory feedback integration successfully establishes category and subcategory representations.

18.
Neural Comput ; 26(12): 2735-89, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25248083

ABSTRACT

Evidence suggests that the brain uses an operational set of canonical computations like normalization, input filtering, and response gain enhancement via reentrant feedback. Here, we propose a three-stage columnar architecture of cascaded model neurons to describe a core circuit combining signal pathways of feedforward and feedback processing and the inhibitory pooling of neurons to normalize the activity. We present an analytical investigation of such a circuit by first reducing its detail through the lumping of initial feedforward response filtering and reentrant modulating signal amplification. The resulting excitatory-inhibitory pair of neurons is analyzed in a 2D phase-space. The inhibitory pool activation is treated as a separate mechanism exhibiting different effects. We analyze subtractive as well as divisive (shunting) interaction to implement center-surround mechanisms that include normalization effects in the characteristics of real neurons. Different variants of a core model architecture are derived and analyzed--in particular, individual excitatory neurons (without pool inhibition), the interaction with an inhibitory subtractive or divisive (i.e., shunting) pool, and the dynamics of recurrent self-excitation combined with divisive inhibition. The stability and existence properties of these model instances are characterized, which serve as guidelines to adjust these properties through proper model parameterization. The significance of the derived results is demonstrated by theoretical predictions of response behaviors in the case of multiple interacting hypercolumns in a single and in multiple feature dimensions. In numerical simulations, we confirm these predictions and provide some explanations for different neural computational properties. Among those, we consider orientation contrast-dependent response behavior, different forms of attentional modulation, contrast element grouping, and the dynamic adaptation of the silent surround in extraclassical receptive field configurations, using only slight variations of the same core reference model.


Subject(s)
Computer Simulation , Feedback , Models, Neurological , Nerve Net/physiology , Neurons/physiology , Algorithms , Humans , Neural Pathways/physiology , Nonlinear Dynamics , Photic Stimulation , Visual Perception
19.
Article in English | MEDLINE | ID: mdl-25157228

ABSTRACT

Visual structures in the environment are segmented into image regions and those combined to a representation of surfaces and prototypical objects. Such a perceptual organization is performed by complex neural mechanisms in the visual cortex of primates. Multiple mutually connected areas in the ventral cortical pathway receive visual input and extract local form features that are subsequently grouped into increasingly complex, more meaningful image elements. Such a distributed network of processing must be capable to make accessible highly articulated changes in shape boundary as well as very subtle curvature changes that contribute to the perception of an object. We propose a recurrent computational network architecture that utilizes hierarchical distributed representations of shape features to encode surface and object boundary over different scales of resolution. Our model makes use of neural mechanisms that model the processing capabilities of early and intermediate stages in visual cortex, namely areas V1-V4 and IT. We suggest that multiple specialized component representations interact by feedforward hierarchical processing that is combined with feedback signals driven by representations generated at higher stages. Based on this, global configurational as well as local information is made available to distinguish changes in the object's contour. Once the outline of a shape has been established, contextual contour configurations are used to assign border ownership directions and thus achieve segregation of figure and ground. The model, thus, proposes how separate mechanisms contribute to distributed hierarchical cortical shape representation and combine with processes of figure-ground segregation. Our model is probed with a selection of stimuli to illustrate processing results at different processing stages. We especially highlight how modulatory feedback connections contribute to the processing of visual input at various stages in the processing hierarchy.

20.
Neural Netw ; 54: 11-6, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24632344

ABSTRACT

Visual sensory input stimuli are rapidly processed along bottom-up feedforward cortical streams. Beyond such driving streams neurons in higher areas provide information that is re-entered into the representations and responses at the earlier stages of processing. The precise mechanisms and underlying functionality of such associative feedforward/feedback interactions are not resolved. This work develops a neuronal circuit at a level mimicking cortical columns with response properties linked to single cell recordings. The proposed model constitutes a coarse-grained model with gradual firing-rate responses which accounts for physiological in vitro recordings from mammalian cortical cells. It is shown that the proposed population-based circuit with gradual firing-rate dynamics generates responses like those of detailed biophysically realistic multi-compartment spiking models. The results motivate using a coarse-grained mechanism for large-scale neural network modeling and simulations of visual cortical mechanisms. They further provide insights about how local recurrent loops change the gain of modulating feedback signals.


Subject(s)
Feedback, Physiological/physiology , Models, Neurological , Pyramidal Cells/physiology , Visual Cortex/physiology , Animals , Neurons/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...