Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Data Brief ; 41: 107893, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35198674

ABSTRACT

High-resolution computed micro-tomography is an important area of science, which correlates well with several experimental methodologies and serves as a basis for advanced computational physics studies, in which high-resolution images are used as input to different scientific simulation models. The dataset presented herein includes (raw) grayscale images obtained using the Bruker Skyscan 1272 X-Ray tomograph; filtered images acquired through contrast enhancement and noise reduction filters; and segmented images obtained by using the IsoData segmentation method. All images have a resolution of 2.25 µm (isometric voxels) and size of 10003 voxels.

2.
Sci Rep ; 11(1): 11370, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34131175

ABSTRACT

Permeability is the key parameter for quantifying fluid flow in porous rocks. Knowledge of the spatial distribution of the connected pore space allows, in principle, to predict the permeability of a rock sample. However, limitations in feature resolution and approximations at microscopic scales have so far precluded systematic upscaling of permeability predictions. Here, we report fluid flow simulations in pore-scale network representations designed to overcome such limitations. We present a novel capillary network representation with an enhanced level of spatial detail at microscale. We find that the network-based flow simulations predict experimental permeabilities measured at lab scale in the same rock sample without the need for calibration or correction. By applying the method to a broader class of representative geological samples, with permeability values covering two orders of magnitude, we obtain scaling relationships that reveal how mesoscale permeability emerges from microscopic capillary diameter and fluid velocity distributions.

3.
Sci Rep ; 7: 46317, 2017 04 11.
Article in English | MEDLINE | ID: mdl-28397869

ABSTRACT

Wettability is the affinity of a liquid for a solid surface. For energetic reasons, macroscopic drops of liquid form nearly spherical caps. The degree of wettability is then captured by the contact angle where the liquid-vapor interface meets the solid-liquid interface. As droplet volumes shrink to the scale of attoliters, however, surface interactions become significant, and droplets assume distorted shapes. In this regime, the contact angle becomes ambiguous, and a scalable metric for quantifying wettability is needed, especially given the emergence of technologies exploiting liquid-solid interactions at the nanoscale. Here we combine nanoscale experiments with molecular-level simulation to study the breakdown of spherical droplet shapes at small length scales. We demonstrate how measured droplet topographies increasingly reveal non-spherical features as volumes shrink. Ultimately, the nanoscale droplets flatten out to form layer-like molecular assemblies at the solid surface. For the lack of an identifiable contact angle at small scales, we introduce a droplet's adsorption energy density as a new metric for a liquid's affinity for a surface. We discover that extrapolating the macroscopic idealization of a drop to the nanoscale, though it does not geometrically resemble a realistic droplet, can nonetheless recover its adsorption energy if line tension is included.

4.
Nano Lett ; 17(5): 2741-2746, 2017 05 10.
Article in English | MEDLINE | ID: mdl-28414911

ABSTRACT

Analysis of nanoscale liquids, including wetting and flow phenomena, is a scientific challenge with far reaching implications for industrial technologies. We report the conception, development, and application of an integrated platform for the experimental characterization of liquids at the nanometer scale. The platform combines the functionalities of a two-dimensional electronic array of sensor devices with in situ application of highly sensitive optical microspectroscopy and atomic force microscopy. We demonstrate the performance capabilities of the platform with an embodiment based on an array of optically transparent graphene sensors. The application of electronic and optical sensing in the platform allows for differentiating between liquids electronically, for determining a liquid's molecular fingerprint, and for monitoring surface wetting dynamics in real time. In order to explore the platform's sensitivity limits, we record topographies and optical spectra of individual, spatially isolated sessile oil emulsion droplets having volumes of less than ten attoliters. The results demonstrate that integrated measurement functionalities based on two-dimensional materials have the potential to push lab-on-chip based analysis from the microscale to the nanoscale.

5.
Nanoscale ; 8(28): 13652-8, 2016 Jul 14.
Article in English | MEDLINE | ID: mdl-27366868

ABSTRACT

The investigation and control of liquid flow at the nanometer scale is a key area of applied research with high relevance to physics, chemistry, and biology. We introduce a method and a device that allows the spatial resolution of liquid flow by integrating an array of graphene-based magnetic (Hall) sensors that is used for tracking the movement of magnetic nanoparticles immersed in a liquid under investigation. With a novel device concept based on standard integration processes and experimentally verified material parameters, we numerically simulate the performance of a single sensor pixel, as well as the whole sensor array, for tracking magnetic nanoparticles having typical properties. The results demonstrate that the device enables (a) the detection of individual nanoparticles in the liquid with high accuracy and (b) the reconstruction of a particle's flow-driven trajectory across the integrated sensor array with sub-pixel precision as a function of time, in what we call the "Magnetic nanoparticle velocimetry" technique. Since the method does not rely on optical detection, potential lab-on-chip applications include particle tracking and flow analysis in opaque media at the sub-micron scale.

SELECTION OF CITATIONS
SEARCH DETAIL
...