Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Theor Appl Genet ; 136(1): 23, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36692839

ABSTRACT

KEY MESSAGE: We used a historical dataset on stripe rust resistance across 11 years in an Austrian winter wheat breeding program to evaluate genomic and pedigree-based linear and semi-parametric prediction methods. Stripe rust (yellow rust) is an economically important foliar disease of wheat (Triticum aestivum L.) caused by the fungus Puccinia striiformis f. sp. tritici. Resistance to stripe rust is controlled by both qualitative (R-genes) and quantitative (small- to medium-effect quantitative trait loci, QTL) mechanisms. Genomic and pedigree-based prediction methods can accelerate selection for quantitative traits such as stripe rust resistance. Here we tested linear and semi-parametric models incorporating genomic, pedigree, and QTL information for cross-validated, forward, and pairwise prediction of adult plant resistance to stripe rust across 11 years (2008-2018) in an Austrian winter wheat breeding program. Semi-parametric genomic modeling had the greatest predictive ability and genetic variance overall, but differences between models were small. Including QTL as covariates improved predictive ability in some years where highly significant QTL had been detected via genome-wide association analysis. Predictive ability was moderate within years (cross-validated) but poor in cross-year frameworks.


Subject(s)
Basidiomycota , Triticum , Chromosome Mapping , Triticum/genetics , Triticum/microbiology , Genome-Wide Association Study , Plant Breeding , Austria , Genomics , Plant Diseases/genetics , Plant Diseases/microbiology , Disease Resistance/genetics
2.
Theor Appl Genet ; 134(9): 3111-3121, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34125246

ABSTRACT

KEY MESSAGE: We combined quantitative and population genetic methods to identify loci under selection for adult plant resistance to stripe rust in an Austrian winter wheat breeding population from 2008 to 2018. Resistance to stripe rust, a foliar disease caused by the fungus P. striiformis f. sp. tritici, in wheat (Triticum aestivum L.) is both qualitatively and quantitatively controlled. Resistance genes confer complete, race-specific resistance but are easily overcome by evolving pathogen populations, while quantitative resistance is controlled by many small- to medium-effect loci that provide incomplete yet more durable protection. Data on resistance loci can be applied in marker-assisted selection and genomic prediction frameworks. We employed genome-wide association to detect loci associated with stripe rust and selection testing to identify regions of the genome that underwent selection for stripe rust resistance in an Austrian winter wheat breeding program from 2008 to 2018. Genome-wide association mapping identified 150 resistance loci, 62 of which showed significant evidence of selection over time. The breeding population also demonstrated selection for resistance at the genome-wide level.


Subject(s)
Basidiomycota/physiology , Chromosomes, Plant/genetics , Disease Resistance/immunology , Plant Diseases/immunology , Plant Proteins/metabolism , Selection, Genetic , Triticum/genetics , Chromosome Mapping/methods , Disease Resistance/genetics , Gene Expression Regulation, Plant , Genetics, Population , Genome-Wide Association Study , Plant Breeding , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Proteins/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Triticum/growth & development , Triticum/microbiology
3.
J Appl Genet ; 56(3): 277-85, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25924791

ABSTRACT

Global wheat production will benefit from cultivars showing genetic resistance to preharvest sprouting (PHS). Working on PHS resistance is still challenging due to the lack of simple protocols for the provocation of symptoms for appropriate trait differentiation under highly variable environmental conditions. Therefore, the availability of molecular markers for enhancing PHS resistance in breeding lines is of utmost importance. Genome-wide association mapping was performed to unravel the genetics of PHS resistance in a diversity panel of 124 winter wheat genotypes using both random and targeted marker locus approaches. Data for grain germination tests, spike wetting treatments, and field sprouting damage measurements of grains were collected in 11, 12, and four environments, respectively. Twenty-two quantitative trait loci (QTL) linked with 40 markers were detected for the three traits commonly used for assessing the PHS resistance of cultivars. All but five QTL on chromosomes 1B, 1D (two QTL), 3D, and 5D showed locations similar to previous studies, including prominent QTL on chromosomes 2BS, 3AS, and 4AL. The highest retrieval rate across environments was found for QTL on chromosomes 1D, 2BS, 3D, 4AL, and 7B. The study identified genomic signatures useful for marker-assisted improvement of PHS resistance not only in European breeding programs, but of global significance.


Subject(s)
Chromosome Mapping , Germination/genetics , Quantitative Trait Loci , Triticum/genetics , Genetic Association Studies , Genetic Markers , Genotype , Phenotype , Sequence Analysis, DNA
4.
Theor Appl Genet ; 127(9): 2011-28, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25112204

ABSTRACT

KEY MESSAGE: We detected several, most likely novel QTL for adult plant resistance to rusts. Notably three QTL improved resistance to leaf rust and stripe rust simultaneously indicating broad spectrum resistance QTL. The rusts of wheat (Puccinia spp.) are destructive fungal wheat diseases. The deployment of resistant cultivars plays a central role in integrated rust disease management. Durability of resistance would be preferred, but is difficult to analyse. The Austrian winter wheat cultivar Capo was released in the 1989 and grown on a large acreage during more than two decades and maintained a good level of quantitative leaf rust and stripe rust resistance. Two bi-parental mapping populations: Capo × Arina and Capo × Furore were tested in multiple environments for severity of leaf rust and stripe rust at the adult plant stage in replicated field experiments. Quantitative trait loci associated with leaf rust and stripe rust severity were mapped using DArT and SSR markers. Five QTL were detected in multiple environments associated with resistance to leaf rust designated as QLr.ifa-2AL, QLr.ifa-2BL, QLr.ifa-2BS, QLr.ifa-3BS, and QLr.ifa-5BL, and five for resistance to stripe rust QYr.ifa-2AL, QYr.ifa-2BL, QYr.ifa-3AS, QYr.ifa-3BS, and QYr.ifa-5A. For all QTL apart from two (QYr.ifa-3AS, QLr.ifa-5BL) Capo contributed the resistance improving allele. The leaf rust and stripe rust resistance QTL on 2AL, 2BL and 3BS mapped to the same chromosome positions, indicating either closely linked genes or pleiotropic gene action. These three multiple disease resistance QTL (QLr.ifa-2AL/QYr.ifa-2AL, QLr.ifa.2BL/QYr.ifa-2BL, QLr.ifa-3BS/QYr.ifa.3BS) potentially contribute novel resistance sources for stripe rust and leaf rust. The long-lasting resistance of Capo apparently rests upon a combination of several genes. The described germplasm, QTL and markers are applicable for simultaneous resistance improvement against leaf rust and stripe rust.


Subject(s)
Basidiomycota/pathogenicity , Disease Resistance/genetics , Plant Diseases/genetics , Quantitative Trait Loci , Triticum/genetics , Breeding , Chromosome Mapping , Chromosomes, Plant , Genetic Linkage , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...