Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 143(2): 798-804, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33405904

ABSTRACT

The crown-ether coordination compounds ZnX2(18-crown-6), EuX2(18-crown-6) (X: Cl, Br, I), MnI2(18-crown-6), Mn3Cl6(18-crown-6)2, Mn3I6(18-crown-6)2, and Mn2I4(18-crown-6) are obtained by ionic-liquid-based synthesis. Whereas MX2(18-crown-6) (M: Zn, Eu) show conventional structural motives, Mn3Cl6(18-crown-6)2, Mn3I6(18-crown-6)2, and Mn2I4(18-crown-6) exhibit unusual single MnX4 tetrahedra coordinated to the crown-ether complex. Surprisingly, some compounds show outstanding photoluminescence. Thus, rare Zn2+-based luminescence is observed and unexpectedly efficient for ZnI2(18-crown-6) with a quantum yield of 54%. Unprecedented quantum yields are also observed for Mn3I6(18-crown-6)2, EuBr2(18-crown-6), and EuI2(18-crown-6) with values of 98, 72, and 82%, respectively, which can be rationalized based on the specific structural features. Most remarkable, however, is Mn2I4(18-crown-6). Its specific structural features with finite sensitizer-activator couples result in an extremely strong emission with an outstanding quantum yield of 100%. Consistent with its structural features, moreover, anisotropic angle-dependent emission under polarized light and nonlinear optical (NLO) effects occur, including second-harmonic generation (SHG). The title compounds and their optical properties are characterized by single-crystal structure analysis, X-ray powder diffraction, chemical analysis, density functional theory (DFT) calculations, and advanced spectroscopic methods.

2.
Angew Chem Int Ed Engl ; 57(43): 14265-14269, 2018 Oct 22.
Article in English | MEDLINE | ID: mdl-30040153

ABSTRACT

The positively charged and weakly polarizable s-block metals commonly do not usually have phosphine ligands in molecular complexes. Herein, we report mono- and dinuclear small diamidophosphine complexes of the alkaline-earth metals Mg, Ca, and Sr, which were prepared from simple precursors and a phosphine-functionalized diamine ligand N,N-bis(2-(diphenyl-phosphino)phenyl)ethane-1,2-diamine (PNHNHP). The alkaline-earth metal based complexes [(PNNP)Mg]2 and [(PNNP)M(thf)3 ] (M=Ca, Sr), exhibit unusual coordination spheres and show bright fluorescence, both in the solid state and in solution. For comparison, the even stronger luminescent Al and Zn complexes [(PNNP)Zn]2 and [(PNNP)AlCl] were prepared. Emission lifetimes in the nanosecond range and high photoluminescence quantum yields up to 93 % are observed at room temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...