Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Environ Res ; 252(Pt 1): 118866, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38580002

ABSTRACT

Mercury (Hg) is known to affect aquatic, terrestrial ecosystems as well as human health, through biomagnification. Mangrove wetlands are potential Hg sinks because of their low tidal velocity, fast sedimentation rate, strong reducing condition and high organic matter content. The spatial and temporal distribution of Hg has been a hot topic of recent studies in mangrove wetlands. In this study, we investigated Hg concentration, accumulation rate and isotopes to reconstruct the Hg pollution history and to differentiate its potential sources in the Gaoqiao mangrove wetland (Guangdong province), which is part of the largest mangrove area in China. We reconstructed a first, continuous, high-resolution Hg pollution history over the last 3000 years in South China. Our findings show that mangrove wetland sediments are more enriched in Hg than the adjacent grasslands. The increased Hg concentration and δ202Hg in recent sediments mirror the enhanced anthropogenic impacts; Hg concentrations in areas with high levels of anthropogenic disturbance are up to 5× higher than the average background value (9.9 ± 1.2 µg kg-1). Compared to mangroves in coastal areas of South China and around the world, the Hg concentration in Gaoqiao is much lower. The significant increase of Hg since the 1950s and the major Hg peak since the 1980s were the evidence of the human activities influences and indicated the possible start date of Anthropocene. After 2007 CE, a decline in Hg pollution occurs due to the effective implementation of the mangrove protection policy. Three potential sources were identified by the Hg isotope traces including urban gaseous Hg, industrial Hg, and regional soil and leaf litter Hg input.


Subject(s)
Environmental Monitoring , Geologic Sediments , Mercury , Water Pollutants, Chemical , Wetlands , China , Mercury/analysis , Geologic Sediments/analysis , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis
2.
iScience ; 27(3): 109038, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38361628

ABSTRACT

Mangrove wetlands are an important component of blue carbon (C) ecosystems, although the anthropogenic impact on organic C accumulation rate (OCAR) in mangrove wetlands is not yet clear. Three sediment cores were collected from Zhanjiang Gaoqiao Mangrove Reserve in Southern China, dated by 210Pb and 137Cs, and physico-chemical parameters measured. Results show that the OCARs in mangroves and grasslands have significantly increased by 4.4 and 1.3 times, respectively, since 1950, which is consistent with the transformation of organic C sources and the increase of sedimentation rate. This increment is due to increased soil erosion and nutrient enrichment caused by land use change and the discharge of fertilizer runoff and aquaculture wastewater. This study provides clear evidence for understanding the changes in organic C accumulation processes during the Anthropocene and is conducive to promoting the realization of C peak and neutrality targets.

3.
Ecotoxicol Environ Saf ; 249: 114437, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-38321658

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants and pose a severe threat to human health. Here, 38 surface sediment samples collected from the Gaoqiao mangrove wetland in Zhanjiang, south China, were analyzed to determine 16 Environmental Protection Agency (EPA) priority PAHs. Total PAHs concentrations ranged from 33.5 µg/kg to 404.8 µg/kg with an average of 147.7 ± 77.7 µg/kg, inferring a moderate pollution level. Three and four-ring compounds dominated the PAHs composition patterns. Significant positive correlations were observed between the PAHs and the physicochemical properties of the sediments. According to the characteristic molecular ratio method, PAHs in sediments were mainly derived from combustion sources, including the incomplete combustion of liquid fossil fuels, grass, wood, and coal. The result based on the PMF model indicates that the primary combustion sources of PAHs are coal combustion, diesel-powered vehicles, biomass combustion and gasoline-powered vehicles, with a share of 39.01%, 25.21%, 12.72% and 10.48%, respectively. The petrogenic source contributes 12.58% PAHs to the sediments. The mean effects range median quotient (m-ERM-Q) and toxic equivalent method (TEQ) indicate a low comprehensive ecological risk of PAHs in the study area. Still, the evaluation results of effects range low (ERL) suggest that PAHs in the sediment would occasionally have adverse biological effects. Therefore, this situation demands attention and calls for protection strategies in the processes of urbanization and industrialization in south China.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Humans , Polycyclic Aromatic Hydrocarbons/analysis , Wetlands , Environmental Monitoring/methods , Risk Assessment , Coal/analysis , China , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis
4.
Chemosphere ; 309(Pt 2): 136803, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36223823

ABSTRACT

The recent substantial expansion of human activities in northeast (NE) China has resulted in increased emission of environmental pollutants. Longer-term records of such environmental pollutants provide a benchmark against which it is possible to evaluate the nature, extent and timing of anthropogenic environmental changes. Based on measurements of mercury (Hg) concentrations and accumulation rates in 11 lake sediment cores from the Songnen Plain in NE China, we here present a reconstruction of the historical deposition of Hg as an indicator of the changing scale of human impact. The results demonstrate an increasing trend of Hg concentration, concurrent with elevated anthropogenic emissions, beginning from the early 1900s, accelerating through the mid-1950s and slightly decreasing from the late 1990s onwards. The increase in anthropogenic Hg coincides with the reform and opening up of China, which precipitated social and economic transformation, and rapid industrial and economic growth. Measurements of the Hg enrichment factor in all the cores enables identification of the anthropogenic contribution to Hg accumulation. The geoaccumulation index indicates that the lakes are in general moderately polluted by Hg. The historical trend of Hg accumulation rate parallels the temporal progression of biomass burning and fossil fuel consumption in the region. The findings elucidate the extent of anthropogenic pollution in the Anthropocene and underline the importance of identifying Hg sources to reduce emissions and guide the implementation of effective mitigation strategies.


Subject(s)
Mercury , Water Pollutants, Chemical , Humans , Lakes , Mercury/analysis , Geologic Sediments , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Fossil Fuels , China
5.
Mar Pollut Bull ; 182: 114033, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35969905

ABSTRACT

Global mangrove wetlands face increasing anthropogenic impacts along the coast. The Zhanjiang mangrove wetland is the largest and adjacent to the most developed bay area in China. Surface sediments were collected in different plant transit and used for potentially harmful trace elements (PHTEs) measurement. Mean contents of Hg, Cr, Ni, Cu, Zn, As, Cd and Pb were 0.01 mg/kg, 56.16 mg/kg, 10.06 mg/kg, 9.61 mg/kg, 43.58 mg/kg, 8.76 mg/kg, 0.25 mg/kg, 28.12 mg/kg. Most of the PHTEs were slightly enriched but the Cd pollution is significant, and the potential ecological risk is moderate. The risk of the mangrove wetland is larger than the grassland and the farmland. The PCA and PMF indicate Hg, Ni, Cu, Zn, As, and Pb mainly originated from local anthropogenic activities, Cr originated from the natural geological process, and Cd mainly originated from atmospheric deposition of regional industrial pollution. In view of the impact of surrounding industry and agriculture and the signs of PHTEs pollution, it is necessary to implement the wetland protection law more strictly to truly realize the construction of ecological civilization. This provides a valid reference for the wetland conservation and management in coastal cities.


Subject(s)
Mercury , Metals, Heavy , Trace Elements , Cadmium , China , Environmental Monitoring , Geologic Sediments , Lead , Metals, Heavy/analysis , Risk Assessment , Trace Elements/analysis , Wetlands
6.
Sci Total Environ ; 721: 137752, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32182467

ABSTRACT

Tibetan Plateau (TP) is an important geographical region for investigating the long-range transport of pollutants as limited emission sources exist in this region. In this study, based on analysis of 61 surface samples, we report the spatial distribution and concentrations of BC, Hg, total organic carbon (TOC) and inorganic carbon (IC) in surface sediments of Selin Co, the largest lake in central Tibet. The mean BC and Hg concentrations were 0.62 ± 0.34 mg/g and 32.03 ± 9.88 ng/g (range: 0.03-1.47 mg/g and 13.83-51.81 ng/g respectively), which were lower than the values from other lakes in the Himalayan-Tibetan Plateau (HTP). BC and Hg exhibited similar spatial distribution in the surface sediments. Similarly, the mean TOC and IC were 2.19 ± 1.46% and 3.13 ± 1.07% (range: 0.0007-7.78% and 0.30-5.30% respectively). BC/TOC ratio, as well as char/soot ratio, suggests biomass burning as a major source of BC in the sediments via the influence of long-range transport. The positive correlation between the concentrations of BC and Hg suggests similar emission sources or transport pathway. Concentrations of BC and Hg were higher in fine grain particles (size <~50 µm) which were capable of transport and deposit in the deeper part of the lake, as suggested by a significant relationship between water depth and particle size. This study elucidates the extent of pollution in very recent ages and also could serve as the basis for paleo-environmental studies in future.

7.
Environ Sci Pollut Res Int ; 27(3): 2670-2676, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31836975

ABSTRACT

At present, the glaciers in the Himalayas and the Tibetan Plateau (HTP) are retreating partly due to albedo reduction caused by deposited light-absorbing impurities such as mineral dust (MD) and black carbon (BC). Because BC also exists widely in MD from surface soil, it is necessary to further evaluate the contribution of BC from MD to the total BC at glacier region. This will help to improve the study of BC sources by considering the relative contributions from MD and direct combustion sources. Therefore, in this study, concentrations of total organic carbon (TOC) and fine particles of BC from 43 surface soil samples of the HTP were investigated. The contribution of BC from MD to total BC deposited at the glacier region was evaluated. The results showed strong correlations between TOC and BC of studied samples (R2 = 0.70, p < 0.01), suggesting that they have similar sources and activity characteristics. The average BC concentration of studied samples was 2.02 ± 1.55 mg g-1, much lower than those of particles deposited at the glacier region and other regions with high soil TOC concentration. The contributions of BC from MD to total surface BC at two glaciers of the inner HTP (Zhadang and Xiaodongkemadi) were 17.66 ± 10.84% and 20.70 ± 16.35%, respectively. Therefore, the contribution of MD to glacier melting of the HTP is higher than that of previously assumed after BC coming along with MD is considered. Because MD concentration is higher at north and west part of the HTP, the contributions of MD at these glacier regions should be larger than previously assumed.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Soil , Soot/analysis , Carbon , Ice Cover , Tibet
8.
Sci Total Environ ; 706: 135351, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31855639

ABSTRACT

Recent studies have revealed the abundance of dissolved organic matter (DOM) in snow/glaciers of the Tibetan Plateau (TP). Here, we present a comprehensive study on the chemical compositions of snowpit samples collected from widely distributed eight glaciers in the western China (six from the TP) to investigate the spatial variation of deposited atmospheric aerosols. An Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was used to chemically characterize the DOM in snow samples which can offer chemical properties of DOM. Highest mass concentration of dissolved species mass was observed in Tienshan Baishui No 1 glacier (TS, 6.55 ± 0.85 mg/L) close to Takalamagan Desert, whereas lowest (0.89 ± 0.18 mg/L) was observed in Zadang Glacier (ZD) in the central TP. DOM (8-40%) and calcium as well as magnesium (9-67%) were generally the most abundant chemical species. Average DOM concentration in the TP glaciers among the investigated sites were comparable. DOM was found highly oxidized with an oxygen to carbon ratio (O/C ratio) ranging from 0.82 to 1.03. Highly oxidized DOM could have related with aerosol aqueous processes as illustrated by observed organic acids. This study provides insights into the spatial variations of the DOM and dissolved inorganic matter, as well as oxidized organic aerosol, were most likely due to local and regional contribution.

9.
Environ Sci Technol ; 53(10): 5641-5651, 2019 05 21.
Article in English | MEDLINE | ID: mdl-30994333

ABSTRACT

Black carbon (BC) is one of the major drivers of climate change, and its measurement in different environment is crucial for the better understanding of long-term trends in the Himalayan-Tibetan Plateau (HTP) as climate warming has intensified in the region. We present the measurement of BC concentration from six lake sediments in the HTP to reconstruct historical BC deposition since the pre-industrial era. Our results show an increasing trend of BC concurrent with increased anthropogenic emission patterns after the commencement of the industrialization era during the 1950s. Also, sedimentation rates and glacier melt strengthening influenced the total input of BC into the lake. Source identification, based on the char and soot composition of BC, suggests biomass-burning emissions as a major contributor to BC, which is further corroborated by open-fire occurrence events in the region. The increasing BC trend continues to recent years, indicating increasing BC emissions, mainly from South Asia.


Subject(s)
Lakes , Soot , Asia , Carbon , Environmental Monitoring , Geologic Sediments , Tibet
10.
Environ Sci Pollut Res Int ; 24(17): 15078-15088, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28493191

ABSTRACT

The Tibetan Plateau (TP) is home to the largest permafrost bodies at low- and mid-latitudes, yet little is known about the distribution and variation of mercury (Hg) in frozen soil of the permafrost regions. In this study, extensive soil sampling campaigns were carried out in 23 soil pits from 12 plots in a high-altitude permafrost region of the Shule River Basin, northeastern TP. Hg distribution, variation, and their dependences on soil properties were analyzed. The results have revealed that total Hg (THg) concentrations were low ranging from 6.3 to 29.1 ng g-1. A near-surface peak of THg concentrations followed by a continuous decrease were observed on the vertical profiles of most soil pits. Significant positive relationships among THg concentrations, soil organic carbon (SOC) contents, and silty fractions were observed, indicating that SOC content and silty fraction are two dominant factors influencing the spatial distribution of THg. THg concentrations in soils showed a decreasing trend with altitude, which was probably attributed to a lower soil potential to Hg accumulation under the condition of lower SOC contents and silty fractions at high altitudes. Approximately, 130.6 t Hg in soils (0-60 cm) was estimated and a loss of 64.2% of Hg from the highly stable and stable permafrost (H-SP) region via permafrost degradation was expected in the upstream regions of the Shule River Basin, indicating that the large areas of permafrost regions may become an important source of global Hg emission as a result of the ongoing widespread permafrost degradation.


Subject(s)
Mercury/analysis , Permafrost , Soil Pollutants/analysis , Altitude , Soil , Tibet
SELECTION OF CITATIONS
SEARCH DETAIL
...