Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36616704

ABSTRACT

Accurate and high-speed transient surface-temperature measurements of combustion devices including internal combustion (IC) engines, gas turbines, etc., provide validation targets and boundary conditions for computational fluid dynamics models, and are broadly relevant to technology advancements such as performance improvement and emissions reduction. Development and demonstration of a multi-infrared-channel pyrometry-based optical instrument for high-speed surface-temperature measurement is described. The measurement principle is based on multi-spectral radiation thermometry (MRT) and uses surface thermal radiation at four discrete spectral regions and a corresponding emissivity model to obtain surface temperature via non-linear least squares (NLLS) optimization. Rules of thumb for specifying the spectral regions and considerations to avoid interference with common combustion products are developed; the impact of these along with linear and non-linear MRT analysis are assessed as a function of temperature and signal-to-noise ratio. A multi-start method to determine the MRT-solution global optimum is described and demonstrated. The resulting multi-channel transient pyrometry instrument is described along with practical considerations including optical-alignment drift, matching intra-channel transient response, and solution-confidence indicators. The instrument demonstrated excellent >97% accuracy and >99% 2-sigma precision over the 400−800 °C range, with ~20 µs (50 kHz, equivalent to 0.2 cad at 2000 RPM IC-engine operation) transient response in the bench validation.

2.
Appl Spectrosc ; 75(10): 1237-1250, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33543995

ABSTRACT

An optical diagnostic, based on laser-induced fluorescence (LIF), has been developed for on-engine measurements of real-time fuel dilution of engine oil or fuel in oil (FIO). Fuel dilution of oil is broadly relevant to advancing engine technology including durability, calibration, and catalyst-system management, and believed to promote destructive stochastic pre-ignition (SPI) during high-load engine operations. While standard (e.g., ASTM D3524-90) methods are not capable of real-time transient measurements, the LIF technique resolves transient dilution on the minutes time scale. We have expanded on our original FIO instrument development by introducing an improved analysis based on multivariate least square chemometrics analysis. The measurement uses a fuel dye (180-1300 parts per million, by mass) and monitors for its presence in the oil using 532 nm excitation and LIF. While the original FIO instrument utilized a two-color ratio method for analysis, the improved chemometric analysis uses the fully resolved LIF dye spectra to provide better predictive FIO accuracy (>92%) over a wide FIO range (1.5-14%) typical of engine application. We also investigate the effect of oil temperature on the LIF signal. Limited engine applications for demonstrating and validating the improved FIO instrument are shown, and the related data used to quantify practical detection limit and sensitivity. The improved analysis is insensitive to laser power fluctuation and change in detector integration time, providing an excellent FIO sensitivity (1-2%) and detection limit (0.01 %FIO) over a wide range of loads and injection timings, illustrating this updated approach to be a promising tool for advancing engine technology.

3.
Sci Rep ; 10(1): 21776, 2020 12 11.
Article in English | MEDLINE | ID: mdl-33311537

ABSTRACT

Biofuels are a promising ecologically viable and renewable alternative to petroleum fuels, with the potential to reduce net greenhouse gas emissions. However, biomass sourced fuels are often produced as blends of hydrocarbons and their oxygenates. Such blending complicates the implementation of these fuels in combustion applications. Variations in a biofuel's composition will dictate combustion properties such as auto ignition temperature, reaction delay time, and reaction pathways. A handful of novel drop-in replacement biofuels for conventional transportation fuels have recently been down selected from a list of over 10,000 potential candidates as part of the U.S. Department of Energy's (DOE) Co-Optimization of Fuels and Engines (Co-Optima) initiative. Diisobutylene (DIB) is one such high-performing hydrocarbon which can readily be produced from the dehydration and dimerization of isobutanol, produced from the fermentation of biomass-derived sugars. The two most common isomers realized, from this process, are 2,4,4-trimethyl-1-pentene (α-DIB) and 2,4,4-trimethyl-2-pentene (ß-DIB). Due to a difference in olefinic bond location, the α- and ß- isomer exhibit dramatically different ignition temperatures at constant pressure and equivalence ratio. This may be attributed to different fragmentation pathways enabled by allylic versus vinylic carbons. For optimal implementation of these biofuel candidates, explicit identification of the intermediates formed during the combustion of each of the isomers is needed. To investigate the combustion pathways of these molecules, tunable vacuum ultraviolet (VUV) light (in the range 8.1-11.0 eV) available at the Lawrence Berkeley National Laboratory's Advanced Light Source (ALS) has been used in conjunction with a jet stirred reactor (JSR) and time-of-flight mass spectrometry to probe intermediates formed. Relative intensity curves for intermediate mass fragments produced during this process were obtained. Several important unique intermediates were identified at the lowest observable combustion temperature with static pressure of 93,325 Pa and for 1.5 s residence time. As this relatively short residence time is just after ignition, this study is targeted at the fuels' ignition events. Ignition characteristics for both isomers were found to be strongly dependent on the kinetics of C4 and C7 fragment production and decomposition, with the tert-butyl radical as a key intermediate species. However, the ignition of α-DIB exhibited larger concentrations of C4 compounds over C7, while the reverse was true for ß-DIB. These identified species will allow for enhanced engineering modeling of fuel blending and engine design.

4.
Proc Natl Acad Sci U S A ; 117(7): 3451-3460, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32015102

ABSTRACT

Soot emissions in combustion are unwanted consequences of burning hydrocarbon fuels. The presence of soot during and following combustion processes is an indication of incomplete combustion and has several negative consequences including the emission of harmful particulates and increased operational costs. Efforts have been made to reduce soot production in combustion engines through utilizing oxygenated biofuels in lieu of traditional nonoxygenated feedstocks. The ongoing Co-Optimization of Fuels and Engines (Co-Optima) initiative from the US Department of Energy (DOE) is focused on accelerating the introduction of affordable, scalable, and sustainable biofuels and high-efficiency, low-emission vehicle engines. The Co-Optima program has identified a handful of biofuel compounds from a list of thousands of potential candidates. In this study, a shock tube was used to evaluate the performance of soot reduction of five high-performance biofuels downselected by the Co-Optima program. Current experiments were performed at test conditions between 1,700 and 2,100 K and 4 and 4.7 atm using shock tube and ultrafast, time-resolve laser absorption diagnostic techniques. The combination of shock heating and nonintrusive laser detection provides a state-of-the-art test platform for high-temperature soot formation under engine conditions. Soot reduction was found in ethanol, cyclopentanone, and methyl acetate; conversely, an α-diisobutylene and methyl furan produced more soot compared to the baseline over longer test times. For each biofuel, several reaction pathways that lead towards soot production were identified. The data collected in these experiments are valuable information for the future of renewable biofuel development and their applicability in engines.

5.
J Phys Chem A ; 123(22): 4764-4775, 2019 Jun 06.
Article in English | MEDLINE | ID: mdl-30924652

ABSTRACT

Triethyl phosphate (TEP) is an organophosphorus compound used as a simulant for highly toxic nerve agents such as sarin GB. A high temperature decomposition pathway during TEP pyrolysis has been proposed previously and takes place via seven concerted elimination reactions. A computational study to investigate the kinetics of these seven reactions was carried out at the CBS-QB3 level of theory. The transition state optimization was done at the B3LYP/6-311G(2d,d,p) theory level, and CanTherm was used to derive the Arrhenius coefficients. The pre-exponential factors of the rate constant of these reactions were found to be up to 50 times lower than the estimated values from the literature. In addition, kinetics of reaction of the trioxidophosphorus radical (PO3) with H2 (H2 + PO3 → HOPO2 + H), which is one of the important reactions in predicting CO formation during TEP decomposition, was also investigated computationally at the same theory level. The new kinetic parameters derived from the computational study were used with the TEP kinetic model proposed recently by our group. In addition, an alternative decomposition pathway for TEP decomposition via H-abstraction, radical decomposition, and recombination reactions was added. The proposed mechanism was validated with the literature's experimental data, that is, intermediate CO time-history data from pyrolysis and oxidation experiments and ignition delay times. Fairly good agreement with experiments was obtained for pyrolysis and oxidation CO yield within 1200-1700 K. The model was able to predict the ignition times of the rich TEP mixture (φ = 2) within 25% of the experimental results, while the discrepancies for stoichiometric and rich mixtures were larger. Discussions on results of sensitivity and reaction pathway analysis are presented to identify the important phosphorus reactions and to understand the effect of addition of the alternative TEP decomposition pathway.

6.
J Phys Chem A ; 122(15): 3829-3836, 2018 Apr 19.
Article in English | MEDLINE | ID: mdl-29584936

ABSTRACT

Pyrolysis and oxidation of triethyl phosphate (TEP) were performed in the reflected shock region at temperatures of 1462-1673 K and 1213-1508 K, respectively, and at pressures near 1.3 atm. CO concentration time histories during the experiments were measured using laser absorption spectroscopy at 4580.4 nm. Experimental CO yields were compared with model predictions using the detailed organophosphorus compounds (OPC) incineration mechanism from the Lawrence Livermore National Lab (LLNL). The mechanism significantly underpredicts CO yield in TEP pyrolysis. During TEP oxidation, predicted rate of CO formation was significantly slower than the experimental results. Therefore, a new improved kinetic model for TEP combustion was developed, which was built upon the AramcoMech2.0 mechanism for C0-C2 chemistry and the existing LLNL submechanism for phosphorus chemistry. Thermochemical data of 40 phosphorus (P)-containing species were reevaluated, either using recently published group values for P-containing species or by quantum chemical calculations (CBS-QB3). The new improved model is in better agreement with the experimental CO time histories within the temperature and pressure conditions tested in this study. Sensitivity analysis was used to identify important reactions affecting CO formation, and future experimental/theoretical studies on kinetic parameters of these reactions were suggested to further improve the model. To the best of our knowledge, this is the first study of TEP kinetics in a shock tube under these conditions and the first time-resolved laser-based species time history data during its pyrolysis and oxidation.

SELECTION OF CITATIONS
SEARCH DETAIL
...