Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 12(9)2020 Sep 05.
Article in English | MEDLINE | ID: mdl-32899549

ABSTRACT

Due to fast nasal mucociliary clearance, only the dissolved drug content can effectively permeate the mucosa and be pharmaceutically active after intranasal application of suspensions. Therefore, the aim of this study was to increase the budesonide concentration in solution of a nasal spray formulation. Budesonide, a highly water-insoluble corticosteroid, was successfully solubilized using a micellar formulation comprising escin, propylene glycol and dexpanthenol in an aqueous buffered environment ("Budesolv"). A formulation based on this micellar system was well-tolerated in the nasal cavity as shown in a good laboratory practice (GLP) local tolerance study in rabbits. Ex vivo permeation studies into porcine nasal mucosa revealed a faster and more efficient absorption. Budesolv with 300 µg/mL solubilized budesonide resulted in a budesonide concentration of 42 µg/g tissue after only 15 min incubation. In comparison, incubation with the marketed product Rhinocort® aqua 64 (1.28 mg/mL budesonide as suspension) led to 15 µg/g tissue. The in vivo tumor-necrosis-factor (TNF)-α secretion in an acute lung inflammation mouse model was significantly reduced (p < 0.001) following a prophylactic treatment with Budesolv compared to Rhinocort® aqua 64. Successful treatment 15 min after the challenge was only possible with Budesolv (40% reduction of TNF-α, p = 0.0012) suggesting a faster onset of action. The data reveal that solubilization based on saponin micelles presents an opportunity for the development of products containing hardly soluble substances that result in a faster onset and a better topical treatment effect.

2.
BMC Biotechnol ; 15: 87, 2015 Sep 18.
Article in English | MEDLINE | ID: mdl-26382581

ABSTRACT

UNLABELLED: BACKGROUND & METHODS: Recombinant factor VII (rFVII), the precursor molecule for recombinant activated FVII (rFVIIa), is, due to its need for complex post translational modifications, produced in mammalian cells. To evaluate the suitability of a human cell line in order to produce rFVII with post-translational modifications as close as possible to pdFVII, we compared the biochemical properties of rFVII synthesized in human embryonic kidney-derived (HEK)293 cells (HEK293rFVII) with those of rFVII expressed in Chinese hamster ovary (CHO, CHOrFVII) and baby hamster kidney (BHK, BHKrFVII) cells, and also with those of plasma derived FVII (pdFVII), using various analytical methods. rFVII was purified from selected production clones derived from BHK, CHO, and HEK293 cells after stable transfection, and rFVII isolates were analyzed for protein activity, impurities and post-translational modifications. RESULTS & DISCUSSION: The analytical results showed no apparent gross differences between the various FVII proteins, except in their N-linked glycosylation pattern. Most N-glycans found on rFVII produced in HEK293 cells were not detected on rFVII from CHO and BHK cells, or, somewhat unexpectedly, on pdFVII; all other protein features were similar. HEK293rFVII glycans were mainly characterized by a higher structural variety and a lower degree of terminal sialylation, and a high amount of terminal N-acetyl galactosamines (GalNAc). All HEK293rFVII oligosaccharides contained one or more fucoses (Fuc), as well as hybrid and high mannose (Man) structures. CONCLUSIONS: From all rFVII isolates investigated, CHOrFVII contained the highest degree of sialylation and no terminal GalNAc, and CHO cells were therefore assumed to be the best option for the production of rFVII.


Subject(s)
Factor VIIa/chemistry , Factor VIIa/metabolism , Glycosylation , Animals , CHO Cells , Carbohydrate Sequence , Cricetinae , Cricetulus , HEK293 Cells , Humans , Protein Processing, Post-Translational , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...