Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Clin Cancer Res ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976016

ABSTRACT

PURPOSE: Recent artificial intelligence (AI) algorithms aided intraoperative decision-making via stimulated Raman histology (SRH) during craniotomy. This study assesses deep-learning algorithms for rapid intraoperative diagnosis from SRH images in small stereotactic-guided brain biopsies. It defines a minimum tissue sample size threshold to ensure diagnostic accuracy. EXPERIMENTAL DESIGN: A prospective single-center study examined 121 SRH images from 84 patients with unclear intracranial lesions undergoing stereotactic brain biopsy. Unprocessed, label-free samples were imaged with a portable fiber-laser Raman scattering microscope. Three deep-learning models were tested to (I) identify tumorous/non-tumorous tissue as qualitative biopsy control, (II) subclassify into high-grade glioma (CNS WHO grade 4), diffuse low-grade glioma (CNS WHO grade 2-3), metastases, lymphoma, or gliosis, and (III) molecularly subtype IDH- and 1p/19q-status of adult-type diffuse gliomas. Model predictions were evaluated against frozen section analysis and final neuropathological diagnoses. RESULTS: The first model identified tumorous/non-tumorous tissue with 91.7% accuracy. Sample size on slides impacted accuracy in brain tumor subclassification (81.6%, κ=0.72 frozen section; 73.9%, κ=0.61 second model), with SRH being smaller than H&E (4.1±2.5mm² vs 16.7±8.2mm², p<0.001). SRH images with over 140 high-quality patches and a mean squeezed sample of 5.26mm² yielded 89.5% accuracy in subclassification and 93.9% in molecular subtyping of adult-type diffuse gliomas. CONCLUSIONS: AI-based SRH image analysis is non-inferior to frozen section analysis in detecting and subclassifying brain tumors during small stereotactic-guided biopsies once a critical squeezed sample size is reached. Beyond frozen section analysis, it enables valid molecular glioma subtyping, allowing faster treatment decisions in the future. Refinement is needed for long-term application.

2.
Neurosurgery ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587396

ABSTRACT

BACKGROUND AND OBJECTIVES: Surgical treatment is an integral component of multimodality management of metastatic spine disease but must be balanced against the risk of surgery-related morbidity and mortality, making tailored surgical counseling a clinical challenge. The aim of this study was to investigate the potential predictive value of the preoperative performance status for surgical outcome in patients with spinal metastases. METHODS: Performance status was determined using the Karnofsky Performance Scale (KPS), and surgical outcome was classified as "favorable" or "unfavorable" based on postoperative changes in neurological function and perioperative complications. The correlation between preoperative performance status and surgical outcome was assessed to determine a KPS-related performance threshold. RESULTS: A total of 463 patients were included. The mean age was 63 years (range: 22-87), and the mean preoperative KPS was 70 (range: 30-100). Analysis of clinical outcome in relation to the preoperative performance status revealed a KPS threshold between 40% and 50% with a relative risk of an unfavorable outcome of 65.7% in KPS ≤40% compared with the relative chance for a favorable outcome of 77.1% in KPS ≥50%. Accordingly, we found significantly higher rates of preserved or restored ambulatory function in KPS ≥50% (85.7%) than in KPS ≤40% (48.6%; P < .001) as opposed to a significantly higher risk of perioperative mortality in KPS ≤40% (11.4%) than in KPS ≥50% (2.1%, P = .012). CONCLUSION: Our results underline the predictive value of the KPS in metastatic spine patients for counseling and decision-making. The study suggests an overall clinical benefit of surgical treatment of spinal metastases in patients with a preoperative KPS score ≥50%, while a high risk of unfavorable outcome outweighing the potential clinical benefit from surgery is encountered in patients with a KPS score ≤40%.

3.
Chirurgie (Heidelb) ; 95(4): 274-279, 2024 Apr.
Article in German | MEDLINE | ID: mdl-38334774

ABSTRACT

BACKGROUND: In brain tumor surgery a personalized surgical approach is crucial to achieve a maximum safe tumor resection. The extent of resection decisively depends on the histological diagnosis. Stimulated Raman histology (SRH), a fiber laser-based optical imaging method, offers the possibility for evaluation of an intraoperative diagnosis in a few minutes. OBJECTIVE: To provide an overview on the applications of SRH in neurosurgery and transference of the technique to other surgical disciplines. METHODS: Description of the technique and review of the current literature on SRH. RESULTS: The SRH technique was successfully used in multiple neuro-oncological tumor entities. Initial pilot projects showed the potential for analysis of extracranial tumors. CONCLUSION: The use of SRH provides a near real-time diagnosis with high diagnostic accuracy and provides further developmental potential to improve personalized tumor surgery.


Subject(s)
Brain Neoplasms , Neurosurgery , Humans , Neurosurgical Procedures/methods , Optical Imaging , Histological Techniques , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery
4.
Medicina (Kaunas) ; 60(1)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38256431

ABSTRACT

Background and Objectives: Prolonged bed rest after the resection of spinal intradural tumors is postulated to mitigate the development of cerebrospinal fluid leaks (CSFLs), which is one of the feared postoperative complications. Nonetheless, the empirical evidence supporting this conjecture remains limited and requires further investigation. The goal of the study was to investigate whether prolonged bed rest lowers the risk of CSFL after the resection of spinal intradural tumors. The primary outcome was the rate of CSFL in each cohort. Materials and Methods: To validate this hypothesis, we conducted a comparative effectiveness research (CER) study at two distinct academic neurosurgical centers, wherein diverse postoperative treatment protocols were employed. Specifically, one center adopted a prolonged bed rest regimen lasting for three days, while the other implemented early postoperative mobilization. For statistical analysis, case-control matching was performed. Results: Out of an overall 451 cases, we matched 101 patients from each center. We analyzed clinical records and images from each case. In the bed rest center, two patients developed a CSFL (n = 2, 1.98%) compared to four patients (n = 4, 3.96%) in the early mobilization center (p = 0.683). Accordingly, CSFL development was not associated with early mobilization (OR 2.041, 95% CI 0.365-11.403; p = 0.416). Univariate and multivariate analysis identified expansion duraplasty as an independent risk factor for CSFL (OR 60.33, 95% CI: 0.015-0.447; p < 0.001). Conclusions: In this CER, we demonstrate that early mobilization following the resection of spinal intradural tumors does not confer an increased risk of the development of CSFL.


Subject(s)
Plastic Surgery Procedures , Spinal Neoplasms , Humans , Comparative Effectiveness Research , Early Ambulation , Cerebrospinal Fluid Leak/etiology
5.
Analyst ; 148(23): 6109-6119, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37927114

ABSTRACT

Label-free identification of tumor cells using spectroscopic assays has emerged as a technological innovation with a proven ability for rapid implementation in clinical care. Machine learning facilitates the optimization of processing and interpretation of extensive data, such as various spectroscopy data obtained from surgical samples. The here-described preclinical work investigates the potential of machine learning algorithms combining confocal Raman spectroscopy to distinguish non-differentiated glioblastoma cells and their respective isogenic differentiated phenotype by means of confocal ultra-rapid measurements. For this purpose, we measured and correlated modalities of 1146 intracellular single-point measurements and sustainingly clustered cell components to predict tumor stem cell existence. By further narrowing a few selected peaks, we found indicative evidence that using our computational imaging technology is a powerful approach to detect tumor stem cells in vitro with an accuracy of 91.7% in distinct cell compartments, mainly because of greater lipid content and putative different protein structures. We also demonstrate that the presented technology can overcome intra- and intertumoral cellular heterogeneity of our disease models, verifying the elevated physiological relevance of our applied disease modeling technology despite intracellular noise limitations for future translational evaluation.


Subject(s)
Glioblastoma , Spectrum Analysis, Raman , Humans , Cell Differentiation , Algorithms , Machine Learning
6.
Cancers (Basel) ; 15(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37835444

ABSTRACT

BACKGROUND: Surgical decompression (SD), with or without posterior stabilization followed by radiotherapy, is an established treatment for patients with metastatic spinal disease with epidural spinal cord compression (ESCC). This study aims to identify risk factors for occurrence of neurological compromise resulting from local recurrence. METHODS: All patients who received surgical treatment for metastatic spinal disease at our center between 2011 and 2022 were included in this study. Cases were evaluated for tumor entity, surgical technique for decompression (decompression, hemilaminectomy, laminectomy, corpectomy) neurological deficits, grade of ESCC, time interval to radiotherapy, and perioperative complications. RESULTS: A total of 747 patients were included in the final analysis, with a follow-up of 296.8 days (95% CI (263.5, 330.1)). During the follow-up period, 7.5% of the patients developed spinal cord/cauda syndrome (SCS). Multivariate analysis revealed prolonged time (>35 d) to radiation therapy as a solitary risk factor (p < 0.001) for occurrence of SCS during follow-up. CONCLUSION: Surgical treatment of spinal metastatic disease improves patients' quality of life and Frankel grade, but radiation therapy needs to be scheduled within a time frame of a few weeks in order to reduce the risk of tumor-induced neurological compromise.

7.
Front Oncol ; 13: 1146031, 2023.
Article in English | MEDLINE | ID: mdl-37234975

ABSTRACT

Introduction: The intrinsic autofluorescence of biological tissues interferes with the detection of fluorophores administered for fluorescence guidance, an emerging auxiliary technique in oncological surgery. Yet, autofluorescence of the human brain and its neoplasia is sparsely examined. This study aims to assess autofluorescence of the brain and its neoplasia on a microscopic level by stimulated Raman histology (SRH) combined with two-photon fluorescence. Methods: With this experimentally established label-free microscopy technique unprocessed tissue can be imaged and analyzed within minutes and the process is easily incorporated in the surgical workflow. In a prospective observational study, we analyzed 397 SRH and corresponding autofluorescence images of 162 samples from 81 consecutive patients that underwent brain tumor surgery. Small tissue samples were squashed on a slide for imaging. SRH and fluorescence images were acquired with a dual wavelength laser (790 nm and 1020 nm) for excitation. In these images tumor and non-tumor regions were identified by a convolutional neural network that reliably differentiates between tumor, healthy brain tissue and low quality SRH images. The identified areas were used to define regions.of- interests (ROIs) and the mean fluorescence intensity was measured. Results: In healthy brain tissue, we found an increased mean autofluorescence signal in the gray (11.86, SD 2.61, n=29) compared to the white matter (5.99, SD 5.14, n=11, p<0.01) and in the cerebrum (11.83, SD 3.29, n=33) versus the cerebellum (2.82, SD 0.93, n=7, p<0.001), respectively. The signal of carcinoma metastases, meningiomas, gliomas and pituitary adenomas was significantly lower (each p<0.05) compared to the autofluorescence in the cerebrum and dura, and significantly higher (each p<0.05) compared to the cerebellum. Melanoma metastases were found to have a higher fluorescent signal (p<0.01) compared to cerebrum and cerebellum. Discussion: In conclusion we found that autofluorescence in the brain varies depending on the tissue type and localization and differs significantly among various brain tumors. This needs to be considered for interpreting photon signal during fluorescence-guided brain tumor surgery.

8.
Nat Med ; 29(4): 828-832, 2023 04.
Article in English | MEDLINE | ID: mdl-36959422

ABSTRACT

Molecular classification has transformed the management of brain tumors by enabling more accurate prognostication and personalized treatment. However, timely molecular diagnostic testing for patients with brain tumors is limited, complicating surgical and adjuvant treatment and obstructing clinical trial enrollment. In this study, we developed DeepGlioma, a rapid (<90 seconds), artificial-intelligence-based diagnostic screening system to streamline the molecular diagnosis of diffuse gliomas. DeepGlioma is trained using a multimodal dataset that includes stimulated Raman histology (SRH); a rapid, label-free, non-consumptive, optical imaging method; and large-scale, public genomic data. In a prospective, multicenter, international testing cohort of patients with diffuse glioma (n = 153) who underwent real-time SRH imaging, we demonstrate that DeepGlioma can predict the molecular alterations used by the World Health Organization to define the adult-type diffuse glioma taxonomy (IDH mutation, 1p19q co-deletion and ATRX mutation), achieving a mean molecular classification accuracy of 93.3 ± 1.6%. Our results represent how artificial intelligence and optical histology can be used to provide a rapid and scalable adjunct to wet lab methods for the molecular screening of patients with diffuse glioma.


Subject(s)
Brain Neoplasms , Glioma , Adult , Humans , Artificial Intelligence , Prospective Studies , Glioma/diagnostic imaging , Glioma/genetics , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Mutation , Isocitrate Dehydrogenase/genetics , Optical Imaging , Intelligence
9.
Cancers (Basel) ; 15(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36900290

ABSTRACT

(1) Background: Transient increase in volume of vestibular schwannomas (VS) after stereotactic radiosurgery (SRS) is common and complicates differentiation between treatment-related changes (pseudoprogression, PP) and tumor recurrence (progressive disease, PD). (2) Methods: Patients with unilateral VS (n = 63) underwent single fraction robotic-guided SRS. Volume changes were classified according to existing RANO criteria. A new response type, PP, with a >20% transient increase in volume was defined and divided into early (within the first 12 months) and late (>12 months) occurrence. (3) Results: The median age was 56 (range: 20-82) years, the median initial tumor volume was 1.5 (range: 0.1-8.6) cm3. The median radiological and clinical follow-up time was 66 (range: 24-103) months. Partial response was observed in 36% (n = 23), stable disease in 35% (n = 22) and PP in 29% (n = 18) of patients. The latter occurred early (16%, n = 10) or late (13%, n = 8). Using these criteria, no case of PD was observed. (4) Conclusion: Any volume increase after SRS for vs. assumed to be PD turned out to be early or late PP. Therefore, we propose modifying RANO criteria for SRS of VS, which may affect the management of vs. during follow-up in favor of further observation.

10.
Neurosurgery ; 69(Suppl 1): 22-23, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36924489

ABSTRACT

INTRODUCTION: Molecular classification has transformed the management of brain tumors by enabling more accurate prognostication and personalized treatment. Access to timely molecular diagnostic testing for brain tumor patients is limited, complicating surgical and adjuvant treatment and obstructing clinical trial enrollment. METHODS: By combining stimulated Raman histology (SRH), a rapid, label-free, non-consumptive, optical imaging method, and deep learning-based image classification, we are able to predict the molecular genetic features used by the World Health Organization (WHO) to define the adult-type diffuse glioma taxonomy, including IDH-1/2, 1p19q-codeletion, and ATRX loss. We developed a multimodal deep neural network training strategy that uses both SRH images and large-scale, public diffuse glioma genomic data (i.e. TCGA, CGGA, etc.) in order to achieve optimal molecular classification performance. RESULTS: One institution was used for model training (University of Michigan) and four institutions (NYU, UCSF, Medical University of Vienna, and University Hospital Cologne) were included for patient enrollment in the prospective testing cohort. Using our system, called DeepGlioma, we achieved an average molecular genetic classification accuracy of 93.2% and identified the correct diffuse glioma molecular subgroup with 91.5% accuracy within 2 minutes in the operating room. DeepGlioma outperformed conventional IDH1-R132H immunohistochemistry (94.2% versus 91.4% accuracy) as a first-line molecular diagnostic screening method for diffuse gliomas and can detect canonical and non-canonical IDH mutations. CONCLUSIONS: Our results demonstrate how artificial intelligence and optical histology can be used to provide a rapid and scalable alternative to wet lab methods for the molecular diagnosis of brain tumor patients during surgery.


Subject(s)
Brain Neoplasms , Glioma , Adult , Humans , Artificial Intelligence , Prospective Studies , Glioma/diagnostic imaging , Glioma/genetics , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Immunohistochemistry , Isocitrate Dehydrogenase/genetics , Mutation/genetics
11.
Cancers (Basel) ; 15(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36672334

ABSTRACT

BACKGROUND: Surgical decompression (SD) followed by radiotherapy (RT) is superior to RT alone in patients with metastatic spinal disease with epidural spinal cord compression (ESCC) and neurological deficit. For patients without neurological deficit and low- to intermediate-grade intraspinal tumor burden, data on whether SD is beneficial are scarce. This study aims to investigate the neurological outcome of patients without neurological deficit, with a low- to intermediate-ESCC, who were treated with or without SD. METHODS: This single-center, multidepartment retrospective analysis includes patients treated for spinal epidural metastases from 2011 to 2021. Neurological status was assessed by Frankel grade, and intraspinal tumor burden was categorized according to the ESCC scale. Spinal instrumentation surgery was only considered as SD if targeted decompression was performed. RESULTS: ESCC scale was determined in 519 patients. Of these, 190 (36.6%) presented with no neurological deficit and a low- to intermediate-grade ESCC (1b, 1c, or 2). Of these, 147 (77.4% were treated with decompression and 43 (22.65%) without. At last follow-up, there was no difference in neurological outcome between the two groups. CONCLUSIONS: Indication for decompressive surgery in neurologically intact patients with low-grade ESCC needs to be set cautiously. So far, it is unclear which patients benefit from additional decompressive surgery, warranting further prospective, randomized trials for this significant cohort of patients.

12.
Front Surg ; 9: 959533, 2022.
Article in English | MEDLINE | ID: mdl-36204341

ABSTRACT

Background: Cerebrospinal fluid leakage (CSFL) following spinal durotomy can lead to severe sequelae. However, while several studies have investigated accidental spinal durotomies, the risk factors and influence of clinical management in planned durotomies remain unclear. Methods: We performed a retrospective analysis of all patients who underwent planned intradural spinal surgery at our institution between 2010 and 2020. Depending on the occurrence of a CSFL, patients were dichotomized and compared with respect to patient and case-related variables as well as dural closure technique, epidural drainage placement, and timing of mobilization. Results: A total of 351 patients were included. CSFL occurred in 4.8% of all cases. Surgical indication, tumor histology, location within the spine, previous intradural surgery, and medical comorbidities were not associated with an increased risk of CSFL development (all p > 0.1). Age [odds ratio (OR), 0.335; 95% confidence interval (CI), 0.105-1.066] and gender (OR, 0.350; 95% CI, 0.110-1.115) were not independently associated with CSFL development. There was no significant association between CSFL development and the dural closure technique (p = 0.251), timing of mobilization (p = 0.332), or placement of an epidural drainage (p = 0.321). Conclusion: CSFL following planned durotomy pose a relevant and quantifiable complication risk of surgery that should be factored in during preoperative patient counseling. Our data could not demonstrate superiority of any particular dural closure technique but support the safety of both early mobilization within 24 h postoperatively and epidural drainage with reduced or no force of suction.

13.
Acta Neuropathol Commun ; 10(1): 109, 2022 08 06.
Article in English | MEDLINE | ID: mdl-35933416

ABSTRACT

Determining the presence of tumor in biopsies and the decision-making during resections is often dependent on intraoperative rapid frozen-section histopathology. Recently, stimulated Raman scattering microscopy has been introduced to rapidly generate digital hematoxylin-and-eosin-stained-like images (stimulated Raman histology) for intraoperative analysis. To enable intraoperative prediction of tumor presence, we aimed to develop a new deep residual convolutional neural network in an automated pipeline and tested its validity. In a monocentric prospective clinical study with 94 patients undergoing biopsy, brain or spinal tumor resection, Stimulated Raman histology images of intraoperative tissue samples were obtained using a fiber-laser-based stimulated Raman scattering microscope. A residual network was established and trained in ResNetV50 to predict three classes for each image: (1) tumor, (2) non-tumor, and (3) low-quality. The residual network was validated on images obtained in three small random areas within the tissue samples and were blindly independently reviewed by a neuropathologist as ground truth. 402 images derived from 132 tissue samples were analyzed representing the entire spectrum of neurooncological surgery. The automated workflow took in a mean of 240 s per case, and the residual network correctly classified tumor (305/326), non-tumorous tissue (49/67), and low-quality (6/9) images with an inter-rater agreement of 89.6% (κ = 0.671). An excellent internal consistency was found among the random areas with 90.2% (Cα = 0.942) accuracy. In conclusion, the novel stimulated Raman histology-based residual network can reliably detect the microscopic presence of tumor and differentiate from non-tumorous brain tissue in resection and biopsy samples within 4 min and may pave a promising way for an alternative rapid intraoperative histopathological decision-making tool.


Subject(s)
Brain Neoplasms , Nonlinear Optical Microscopy , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Disease Progression , Humans , Neural Networks, Computer , Neurosurgical Procedures , Prospective Studies , Radiopharmaceuticals
14.
Front Oncol ; 12: 874631, 2022.
Article in English | MEDLINE | ID: mdl-35692752

ABSTRACT

Background: Surgical treatment of patients with glioblastoma affecting motor eloquent brain regions remains critically discussed given the risk-benefit dilemma of prolonging survival at the cost of motor-functional damage. Tractography informed by navigated transcranial magnetic stimulation (nTMS-informed tractography, TIT) provides a rather robust estimate of the individual location of the corticospinal tract (CST), a highly vulnerable structure with poor functional reorganisation potential. We hypothesised that by a more comprehensive, individualised surgical decision-making using TIT, tumours in close relationship to the CST can be resected with at least equal probability of gross total resection (GTR) than less eloquently located tumours without causing significantly more gross motor function harm. Moreover, we explored whether the completeness of TIT-aided resection translates to longer survival. Methods: A total of 61 patients (median age 63 years, m = 34) with primary glioblastoma neighbouring or involving the CST were operated on between 2010 and 2015. TIT was performed to inform surgical planning in 35 of the patients (group T; vs. 26 control patients). To achieve largely unconfounded group comparisons for each co-primary outcome (i.e., gross-motor functional worsening, GTR, survival), (i) uni- and multivariate regression analyses were performed to identify features of optimal outcome prediction; (ii), optimal propensity score matching (PSM) was applied to balance those features pairwise across groups, followed by (iii) pairwise group comparison. Results: Patients in group T featured a significantly higher lesion-CST overlap compared to controls (8.7 ± 10.7% vs. 3.8 ± 5.7%; p = 0.022). The frequency of gross motor worsening was higher in group T, albeit non-significant (n = 5/35 vs. n = 0/26; p = 0.108). PSM-based paired-sample comparison, controlling for the confounders of preoperative tumour volume and vicinity to the delicate vasculature of the insula, showed higher GTR rates in group T (77% vs. 69%; p = 0.025), particularly in patients with a priori intended GTR (87% vs. 78%; p = 0.003). This translates into a prolonged PFS in the same PSM subgroup (8.9 vs. 5.8 months; p = 0.03), with GTR representing the strongest predictor of PFS (p = 0.001) and OS (p = 0.0003) overall. Conclusion: The benefit of TIT-aided GTR appears to overcome the drawbacks of potentially elevated motor functional risk in motor eloquent tumour localisation, leading to prolonged survival of patients with primary glioblastoma close to the CST.

15.
Cancers (Basel) ; 14(9)2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35565322

ABSTRACT

Background: Adequate assessment of spinal instability using the spinal instability neoplastic score (SINS) frequently guides surgical therapy in spinal epidural osseous metastases and subsequently influences neurological outcome. However, how to surgically manage 'impending instability' at SINS 7−12 most appropriately remains uncertain. This study aimed to evaluate the necessity of spinal instrumentation in patients with SINS 7−12 with regards to neurological outcome. Methods: We screened 683 patients with spinal epidural metastases treated at our interdisciplinary spine center. The preoperative SINS was assessed to determine spinal instability and neurological status was defined using the Frankel score. Patients were dichotomized according to being treated by instrumentation surgery and neurological outcomes were compared. Additionally, a subgroup analysis of groups with SINS of 7−9 and 10−12 was performed. Results: Of 331 patients with a SINS of 7−12, 76.1% underwent spinal instrumentation. Neurological outcome did not differ significantly between instrumented and non-instrumented patients (p = 0.612). Spinal instrumentation was performed more frequently in SINS 10−12 than in SINS 7−9 (p < 0.001). The subgroup analysis showed no significant differences in neurological outcome between instrumented and non-instrumented patients in either SINS 7−9 (p = 0.278) or SINS 10−12 (p = 0.577). Complications occurred more frequently in instrumented than in non-instrumented patients (p = 0.016). Conclusions: Our data suggest that a SINS of 7−12 alone might not warrant the increased surgical risks of additional spinal instrumentation.

16.
Hum Brain Mapp ; 42(16): 5309-5321, 2021 11.
Article in English | MEDLINE | ID: mdl-34387388

ABSTRACT

Repetitive TMS (rTMS) with a frequency of 5-10 Hz is widely used for language mapping. However, it may be accompanied by discomfort and is limited in the number and reliability of evoked language errors. We, here, systematically tested the influence of different stimulation frequencies (i.e., 10, 30, and 50 Hz) on tolerability, number, reliability, and cortical distribution of language errors aiming at improved language mapping. 15 right-handed, healthy subjects (m = 8, median age: 29 yrs) were investigated in two sessions, separated by 2-5 days. In each session, 10, 30, and 50 Hz rTMS were applied over the left hemisphere in a randomized order during a picture naming task. Overall, 30 Hz rTMS evoked significantly more errors (20 ± 12%) compared to 50 Hz (12 ± 8%; p <.01), whereas error rates were comparable between 30/50 and 10 Hz (18 ± 11%). Across all conditions, a significantly higher error rate was found in Session 1 (19 ± 13%) compared to Session 2 (13 ± 7%, p <.05). The error rate was poorly reliable between sessions for 10 (intraclass correlation coefficient, ICC = .315) and 30 Hz (ICC = .427), whereas 50 Hz showed a moderate reliability (ICC = .597). Spatial reliability of language errors was low to moderate with a tendency toward increased reliability for higher frequencies, for example, within frontal regions. Compared to 10 Hz, both, 30 and 50 Hz were rated as less painful. Taken together, our data favor the use of rTMS-protocols employing higher frequencies for evoking language errors reliably and with reduced discomfort, depending on the region of interest.


Subject(s)
Brain Mapping , Cerebral Cortex/physiology , Pattern Recognition, Visual/physiology , Psycholinguistics , Speech/physiology , Transcranial Magnetic Stimulation , Adult , Cerebral Cortex/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Male , Reproducibility of Results , Young Adult
17.
Hum Brain Mapp ; 41(14): 3970-3983, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32588936

ABSTRACT

Precise and comprehensive mapping of somatotopic representations in the motor cortex is clinically essential to achieve maximum resection of brain tumours whilst preserving motor function, especially since the current gold standard, that is, intraoperative direct cortical stimulation (DCS), holds limitations linked to the intraoperative setting such as time constraints or anatomical restrictions. Non-invasive techniques are increasingly relevant with regard to pre-operative risk-assessment. Here, we assessed the congruency of neuronavigated transcranial magnetic stimulation (nTMS) and functional magnetic resonance imaging (fMRI) with DCS. The motor representations of the hand, the foot and the tongue regions of 36 patients with intracranial tumours were mapped pre-operatively using nTMS and fMRI and by intraoperative DCS. Euclidean distances (ED) between hotspots/centres of gravity and (relative) overlaps of the maps were compared. We found significantly smaller EDs (11.4 ± 8.3 vs. 16.8 ± 7.0 mm) and better spatial overlaps (64 ± 38% vs. 37 ± 37%) between DCS and nTMS compared with DCS and fMRI. In contrast to DCS, fMRI and nTMS mappings were feasible for all regions and patients without complications. In summary, nTMS seems to be the more promising non-invasive motor cortex mapping technique to approximate the gold standard DCS results.


Subject(s)
Brain Mapping/methods , Brain Mapping/standards , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Evoked Potentials, Motor/physiology , Magnetic Resonance Imaging/standards , Motor Activity/physiology , Motor Cortex/physiology , Neuronavigation/standards , Neurosurgical Procedures/standards , Transcranial Magnetic Stimulation/standards , Adult , Aged , Electric Stimulation , Electromyography , Female , Humans , Male , Microsurgery , Middle Aged , Motor Cortex/diagnostic imaging , Preoperative Care/standards
18.
ACS Nano ; 13(2): 1354-1364, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30624916

ABSTRACT

Cancers of the gastrointestinal (GI) tract are among the most frequent and most lethal cancers worldwide. An important reason for this high mortality is that early disease is typically asymptomatic, and patients often present with advanced, incurable disease. Even in high-risk patients who routinely undergo endoscopic screening, lesions can be missed due to their small size or subtle appearance. Thus, current imaging approaches lack the sensitivity and specificity to accurately detect incipient GI tract cancers. Here we report our finding that a single dose of a high-sensitivity surface-enhanced resonance Raman scattering nanoparticle (SERRS-NP) enables reliable detection of precancerous GI lesions in animal models that closely mimic disease development in humans. Some of these animal models have not been used previously to evaluate imaging probes for early cancer detection. The studies were performed using a commercial Raman imaging system, a newly developed mouse Raman endoscope, and finally a clinically applicable Raman endoscope for larger animal studies. We show that this SERRS-NP-based approach enables robust detection of small, premalignant lesions in animal models that faithfully recapitulate human esophageal, gastric, and colorectal tumorigenesis. This method holds promise for much earlier detection of GI cancers than currently possible and could lead therefore to marked reduction of morbidity and mortality of these tumor types.


Subject(s)
Endoscopy/methods , Gastrointestinal Neoplasms/diagnosis , Gastrointestinal Tract/metabolism , Nanoparticles/chemistry , Spectrum Analysis, Raman/methods , Animals , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
19.
Brain Topogr ; 32(3): 418-434, 2019 05.
Article in English | MEDLINE | ID: mdl-30673935

ABSTRACT

Modulatory effects of transcranial magnetic stimulation (TMS) strongly depend on the stimulation parameters. Here, we compared the immediate, task-locked inhibitory effects on speech-related muscles and the tolerability of different TMS protocols during a language production task. Repetitive TMS (rTMS) and paired-pulse TMS (PP) were applied in 13 healthy subjects over the primary motor cortex (M1) during a finger-tapping/tongue-twisting tasks. The lowest subject-specific TMS intensity leading to movement disruptions was used for TMS over left-sided speech-related areas during picture naming. Here, time-locked PP and rTMS (10/30/50 Hz; randomized sequence) were applied. Cortical silent periods (cSPs) were analyzed from electromyography obtained from various face muscles. 30 Hz- and 50 Hz-rTMS reliably evoked tongue movement disruption (ICC = 0.65) at lower rTMS intensities compared to 10 Hz-rTMS or PP. CSPs were elicited from the left hemisphere by all TMS protocols, most reliably by PP (p < 0.001). Also, cSPs with longest durations were induced by PP. Exploratory analyses of PP suggest that the trials with strongest motor inhibitory effects (presence of cSP) were associated with more articulatory naming errors, hence hinting at the utility of TMS-elicited, facial cSP for mapping of language production areas. Higher-frequency rTMS and PP evoked stronger inhibitory effects as compared to 10 Hz-rTMS during a language task, thus enabling a probably more efficient and tolerable routine for language mapping. The spatial distribution of cranial muscle cSPs implies that TMS might affect not only M1, but also distant parts of the language network.


Subject(s)
Evoked Potentials, Motor , Facial Muscles , Speech , Transcranial Magnetic Stimulation/methods , Adult , Electromyography , Face , Female , Healthy Volunteers , Humans , Language , Male , Motor Cortex , Movement/physiology , Neural Inhibition , Pain, Procedural
20.
Ultrasound Med Biol ; 44(11): 2388-2392, 2018 11.
Article in English | MEDLINE | ID: mdl-30093337

ABSTRACT

Human skull poses a significant barrier for the propagation of ultrasound waves. Development of methods enabling more efficient ultrasound transmission into and from the brain is therefore critical for the advancement of ultrasound-mediated transcranial imaging or actuation techniques. We report on the first observation of guided acoustic waves in the near field of an ex vivo human skull specimen in the frequency range between 0.2 and 1.5MHz. In contrast to what was previously observed for guided wave propagation in thin rodent skulls, the guided wave observed in a higher-frequency regime corresponds to a quasi-Rayleigh wave, confined mostly to the cortical bone layer. The newly discovered near-field properties of the human skull are expected to facilitate the development of more efficient diagnostic and therapeutic techniques based on transcranial ultrasound.


Subject(s)
Skull/diagnostic imaging , Ultrasonography , Humans , Sound
SELECTION OF CITATIONS
SEARCH DETAIL
...