Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 26(8): R317-8, 2016 04 25.
Article in English | MEDLINE | ID: mdl-27115685

ABSTRACT

For more than a century ecologists have considered that competitive interactions between species are more intense at low latitudes [1,2]. This is frequently invoked as either an explanation or a consequence of higher species richness in the tropics, also suggesting that competition shifts from intra- to inter-specific towards the tropics [1]. Another common assumption is that within a community, intraspecific competition needs to be relatively strong, compared to inter-specific competition, in order to enable stable coexistence of species [3]. However, many analyses have found no consistent large scale geographic patterns in the intensity of intra- or interspecific competition [4]. Here, we show a clear latitudinal trend in contest competition for space in nearshore marine environments, for bryozoans (sessile, colonial, suspension feeding animals). Bryozoans form species-rich assemblages with other encrusting fauna and flora (corraline algae), and are highly abundant across the globe [5]. We find that whilst the intensity of competition (percentage of bryozoan colonies involved in direct physical spatial interactions with bryozoan or other encrusters) differed little with latitude, its severity (percentage of bryozoan colonies involved in contests with a win/loss outcome, leading to death of the loser) was three times lower at the poles than in the tropics. The cause of this change in severity was a strong shift in taxonomic relatedness of competitors, from interactions between species of different families dominating at lower latitudes, to mainly intraspecific competition at the poles.


Subject(s)
Bryozoa/physiology , Competitive Behavior , Ecosystem , Models, Biological , Animals , Oceans and Seas
2.
Science ; 269(5228): 1257-60, 1995 Sep 01.
Article in English | MEDLINE | ID: mdl-17732112

ABSTRACT

Ecologists have long been studying stability in ecosystems by looking at the structuring and the strengths of trophic interactions in community food webs. In a series of real food webs from native and agricultural soils, the strengths of the interactions were found to be patterned in a way that is important to ecosystem stability. The patterning consisted of the simultaneous occurrence of strong "top down" effects at lower trophic levels and strong "bottom up" effects at higher trophic levels. As the patterning resulted directly from the energetic organization of the food webs, the results show that energetics and community structure govern ecosystem stability by imposing stabilizing patterns of interaction strengths.

3.
Trends Ecol Evol ; 9(10): 378-83, 1994 Oct.
Article in English | MEDLINE | ID: mdl-21236897

ABSTRACT

Agricultural practices affect the spatial patterns and dynamics of the decomposition of soil organic matter and the availability of plant-limiting nutrients. The biological processes underlying these patterns and dynamics are the trophic interactions among the organisms in the soil community food web. Food web models simulate nutrient flow rates close to observed rates and clarify the role of the various groups of organisms in the cycling of nutrients. Several large interdisciplinary programs are currently focusing on these interactions, with a view to developing and managing sustainable forms of agriculture.

SELECTION OF CITATIONS
SEARCH DETAIL
...