Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 926: 172049, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38552974

ABSTRACT

Forests are undergoing increasing risks of drought-induced tree mortality. Species replacement patterns following mortality may have a significant impact on the global carbon cycle. Among major hardwoods, deciduous oaks (Quercus spp.) are increasingly reported as replacing dying conifers across the Northern Hemisphere. Yet, our knowledge on the growth responses of these oaks to drought is incomplete, especially regarding post-drought legacy effects. The objectives of this study were to determine the occurrence, duration, and magnitude of legacy effects of extreme droughts and how that vary across species, sites, and drought characteristics. The legacy effects were quantified by the deviation of observed from expected radial growth indices in the period 1940-2016. We used stand-level chronologies from 458 sites and 21 oak species primarily from Europe, north-eastern America, and eastern Asia. We found that legacy effects of droughts could last from 1 to 5 years after the drought and were more prolonged in dry sites. Negative legacy effects (i.e., lower growth than expected) were more prevalent after repetitive droughts in dry sites. The effect of repetitive drought was stronger in Mediterranean oaks especially in Quercus faginea. Species-specific analyses revealed that Q. petraea and Q. macrocarpa from dry sites were more negatively affected by the droughts while growth of several oak species from mesic sites increased during post-drought years. Sites showing positive correlations to winter temperature showed little to no growth depression after drought, whereas sites with a positive correlation to previous summer water balance showed decreased growth. This may indicate that although winter warming favors tree growth during droughts, previous-year summer precipitation may predispose oak trees to current-year extreme droughts. Our results revealed a massive role of repetitive droughts in determining legacy effects and highlighted how growth sensitivity to climate, drought seasonality and species-specific traits drive the legacy effects in deciduous oak species.


Subject(s)
Quercus , Trees , Quercus/physiology , Droughts , Climate , Seasons , Forests , Climate Change
2.
Sci Total Environ ; 784: 147222, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34088042

ABSTRACT

Recent studies have identified strong relationships between delayed recovery of tree growth after drought and tree mortality caused by subsequent droughts. These observations raise concerns about forest ecosystem services and post-drought growth recovery given the projected increase in drought frequency and extremes. For quantifying the impact of extreme droughts on tree radial growth, we used a network of tree-ring width data of 1689 trees from 100 sites representing most of the distribution of two drought tolerant, deciduous oak species (Quercus petraea and Quercus robur). We first examined which climatic factors and seasons control growth of the two species and if there is any latitudinal, longitudinal or elevational trend. We then quantified the relative departure from pre-drought growth during droughts, and how fast trees were able to recover the pre-drought growth level. Our results showed that growth was more related to precipitation and climatic water balance (precipitation minus potential evapotranspiration) than to temperature. However, we did not detect any clear latitudinal, longitudinal or elevational trends except a decreasing influence of summer water balance on growth of Q. petraea with latitude. Neither species was able to maintain the pre-drought growth level during droughts. However, both species showed rapid recovery or even growth compensation after summer droughts but displayed slow recovery in response to spring droughts where none of the two species was able to fully recover the pre-drought growth-level over the three post-drought years. Collectively, our results indicate that oaks which are considered resilient to extreme droughts have also shown vulnerability when droughts occurred in spring especially at sites where long-term growth is not significantly correlated with climatic factors. This improved understanding of the role of drought seasonality and climate sensitivity of sites is key to better predict trajectories of post-drought growth recovery in response to the drier climate projected for Europe.


Subject(s)
Quercus , Climate Change , Droughts , Ecosystem , Europe , Forests , Trees
3.
Tree Physiol ; 38(12): 1855-1870, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30265369

ABSTRACT

Among the environmental factors that have an effect on the isotopic signature of tree rings, the specific impact of soil moisture on the Δ13C and, in particular, the δ18O ratios has scarcely been investigated. We studied the effects of soil type and soil moisture (from moderately moist [Cambisol] to wet [Gleysol]) on the growth and isotopic signature of tree rings of Norway spruce (Picea abies [L.] H. Karst.), a widely distributed forest tree species in Central Europe, at a small spatial scale in a typical mature forest plantation in the low mountain ranges of Western Germany. The δ18O ratios were lower in rings of trees growing at the wettest microsite (Gleysol) than in tree rings from the microsite with moderately moist soil (Cambisol). This indicates higher uptake rates of 18O-unenriched soil water at the Gleysol microsite and corresponds to less negative soil water potentials and higher transpiration rates on the Gleysol plots. Contrary to our expectations, the basal area increments, the Δ13C ratios and the intrinsic water-use efficiency (calculated on the basis of δ13C) did not differ significantly between the Cambisol and the Gleysol microsites. For average values of each microsite and year investigated, we found a significantly positive correlation between δ13C and δ18O, which indicates a consistent stomatal control over gas exchange along the soil moisture gradient at comparable relative air humidity in the stand. As δ18O ratios of tree rings integrate responses of wood formation to soil moisture over longer periods of time, they may help to identify microsites differing in soil water availability along small-scale gradients of soil moisture under homogeneous climatic conditions and to explain the occurrence of particular tree species along those gradients in forest stands.


Subject(s)
Groundwater , Picea/growth & development , Soil , Trees/growth & development , Carbon Isotopes , Picea/chemistry , Plant Stems/growth & development , Switzerland , Trees/chemistry , Wood/chemistry , Wood/growth & development
4.
Sensors (Basel) ; 16(12)2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27916949

ABSTRACT

Granier-type thermal dissipation probes are common instruments for quantifying tree water use in forest hydrological studies. Estimating sapflow using Granier-type sapflow sensors requires determining the maximum temperature gradient (∆Tmax) between the heated probe and the reference probe below. ∆Tmax represents a state of zero sap flux, which was originally assumed to occur each night leading to a ∆Tmax determination on a daily basis. However, researchers have proven that, under certain conditions, sapflow may continue throughout the night. Therefore alternative approaches to determining ∆Tmax have been developed. Multiple ∆Tmax approaches are now in use; however, sapflow estimates remain imprecise because the empirical equation that transfers the raw temperature signal (∆T) to sap flux density (Fd) is strongly sensitive to ∆Tmax. In this study, we analyze the effects of different ∆Tmax determination approaches on sub-daily, daily and (intra-)seasonal Fd estimations. On this basis, we quantify the uncertainty of sapflow calculations, which is related to the raw signal processing. We show that the ∆Tmax determination procedure has a major influence on absolute ∆Tmax values and the respective sap flux density computations. Consequently, the choice of the ∆Tmax determination approach may be a significant source of uncertainty in sapflow estimations.

5.
Sci Rep ; 5: 18560, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26686001

ABSTRACT

Recent climate change is affecting the earth system to an unprecedented extent and intensity and has the potential to cause severe ecological and socioeconomic consequences. To understand natural and anthropogenic induced processes, feedbacks, trends, and dynamics in the climate system, it is also essential to consider longer timescales. In this context, annually resolved tree-ring data are often used to reconstruct past temperature or precipitation variability as well as atmospheric or oceanic indices such as the North Atlantic Oscillation (NAO) or the Atlantic Multidecadal Oscillation (AMO). The aim of this study is to assess weather-type sensitivity across the Northern Atlantic region based on two tree-ring width networks. Our results indicate that nonstationarities in superordinate space and time scales of the climate system (here synoptic- to global scale, NAO, AMO) can affect the climate sensitivity of tree-rings in subordinate levels of the system (here meso- to synoptic scale, weather-types). This scale bias effect has the capability to impact even large multiproxy networks and the ability of these networks to provide information about past climate conditions. To avoid scale biases in climate reconstructions, interdependencies between the different scales in the climate system must be considered, especially internal ocean/atmosphere dynamics.

6.
Sci Adv ; 1(10): e1500561, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26601136

ABSTRACT

Climate model projections suggest widespread drying in the Mediterranean Basin and wetting in Fennoscandia in the coming decades largely as a consequence of greenhouse gas forcing of climate. To place these and other "Old World" climate projections into historical perspective based on more complete estimates of natural hydroclimatic variability, we have developed the "Old World Drought Atlas" (OWDA), a set of year-to-year maps of tree-ring reconstructed summer wetness and dryness over Europe and the Mediterranean Basin during the Common Era. The OWDA matches historical accounts of severe drought and wetness with a spatial completeness not previously available. In addition, megadroughts reconstructed over north-central Europe in the 11th and mid-15th centuries reinforce other evidence from North America and Asia that droughts were more severe, extensive, and prolonged over Northern Hemisphere land areas before the 20th century, with an inadequate understanding of their causes. The OWDA provides new data to determine the causes of Old World drought and wetness and attribute past climate variability to forced and/or internal variability.

7.
Tree Physiol ; 29(1): 39-51, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19203931

ABSTRACT

We analyze interannual to multi-decadal growth variations of 555 oak trees from Central-West Germany. A network of 13 pedunculate oak (Quercus robur L.) and 33 sessile oak (Quercus petraea (Matt.) Liebl.) site chronologies is compared with gridded temperature, precipitation, cloud-cover, vapor pressure and drought (i.e., Palmer Drought Severity Index, PDSI) fluctuations. A hierarchic cluster analysis identifies three groups for each oak species differentiated by ecologic settings. When high precipitation is primarily a characteristic for one Q. robur and one Q. petraea cluster, the other clusters are more differentiated by prevailing temperature conditions. Correlation analysis with precipitation and vapor pressure reveals statistically significant (P < or = 0.05) correlations for June (r = 0.51) and annual (r = 0.43) means. Growth of both species at dry sites correlates strongly with PDSI (r = 0.39, P < or = 0.05), and weakly with temperature and cloud-cover. In natural stands, Q. robur responds more strongly to water depletion than Q. petraea. Twenty-one-year moving correlations show positive significant growth response to both PDSI and precipitation throughout the 20th century, except for the 1940s - an anomalously warm decade during which all oak sites are characterized by an increased growth and an enhanced association with vapor pressure and temperature. We suggest that the wider oak rings that are exhibited during this period may be indicative of a nonlinear or threshold-induced growth response to drought and vapor pressure, and run counter to the general response of oak to drought and precipitation that normally would result in suppressed growth in a warmer and drier environment. As the wide rings are formed during the severe drought period of the 20th century, a complex model seems to be required to fully explain the widespread oak growth. Our results indicate uncertainty in estimates of future growth trends of Central European oak forests in a warming and drying world.


Subject(s)
Climate , Quercus/growth & development , Temperature , Darkness , Droughts , Germany , Greenhouse Effect , Rain , Trees/growth & development , Vapor Pressure , Wood/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...