Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Morphol ; 279(5): 589-597, 2018 05.
Article in English | MEDLINE | ID: mdl-29388261

ABSTRACT

Acoel worms are simple, often microscopic animals with direct development, a multiciliated epidermis, a statocyst, and a digestive parenchyma instead of a gut epithelium. Morphological characters of acoels have been notoriously difficult to interpret due to their relative scarcity. The nervous system is one of the most accessible and widely used comparative features in acoels, which have a so-called commissural brain without capsule and several major longitudinal neurite bundles. Here, we use the selective binding properties of a neuropeptide antibody raised in echinoderms (SALMFamide2, or S2), and a commercial antibody against serotonin (5-HT) to provide additional characters of the acoel nervous system. We have prepared whole-mount immunofluorescent stainings of three acoel species: Symsagittifera psammophila (Convolutidae), Aphanostoma pisae, and the model acoel Isodiametra pulchra (both Isodiametridae). The commissural brain of all three acoels is delimited anteriorly by the ventral anterior commissure, and posteriorly by the dorsal posterior commissure. The dorsal anterior commissure is situated between the ventral anterior commissure and the dorsal posterior commissure, while the statocyst lies between dorsal anterior and dorsal posterior commissure. S2 and serotonin do not co-localise, and they follow similar patterns to each other within an animal. In particular, S2, but not 5-HT, stains a prominent commissure posterior to the main (dorsal) posterior commissure. We have for the first time observed a closed posterior loop of the main neurite bundles in S. psammophila for both the amidergic and the serotonergic nervous system. In I. pulchra, the lateral neurite bundles also form a posterior loop in our serotonergic nervous system stainings.


Subject(s)
Invertebrates/anatomy & histology , Invertebrates/metabolism , Nervous System/anatomy & histology , Nervous System/metabolism , Serotonin/metabolism , Animals , Serotonin/analysis
2.
Pest Manag Sci ; 71(3): 459-66, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25052810

ABSTRACT

BACKGROUND: Pollen beetle (Meligethes aeneus F.) management in oilseed rape (Brassica napus L.) has become an urgent issue in the light of insecticide resistance. Risk prediction advice has relied upon flight temperature thresholds, while risk assessment uses simple economic thresholds. However, there is variation in the reported temperature of migration, and economic thresholds vary widely across Europe, probably owing to climatic factors interacting with beetle activity and plant compensation for damage. The effect of temperature on flight, feeding and oviposition activity of M. aeneus was examined in controlled conditions. RESULTS: Escape from a release vial was taken as evidence of flight and was supported by video observations. The propensity to fly followed a sigmoid temperature-response curve between 6 and 23 °C; the 10, 25 and 50% flight temperature thresholds were 12.0-12.5 °C, 13.6-14.2 °C and 15.5-16.2 °C, respectively. Thresholds were slightly higher in the second of two flight bioassays, suggesting an effect of beetle age. Strong positive relationships were found between temperature (6-20 °C) and the rates of feeding and oviposition on flower buds of oilseed rape. CONCLUSION: These temperature relationships could be used to improve M. aeneus migration risk assessment, refine weather-based decision support systems and modulate damage thresholds according to rates of bud damage.


Subject(s)
Coleoptera/physiology , Feeding Behavior/physiology , Flight, Animal/physiology , Oviposition/physiology , Temperature , Animals , Biological Assay , Brassica napus/parasitology , Flowers/parasitology , Pest Control , Video Recording
SELECTION OF CITATIONS
SEARCH DETAIL
...