Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Mol Oncol ; 18(3): 726-742, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38225213

ABSTRACT

Prostate cancer is a frequent malignancy in older men and has a very high 5-year survival rate if diagnosed early. The prognosis is much less promising if the tumor has already spread outside the prostate gland. Targeted treatments mainly aim at blocking androgen receptor (AR) signaling and initially show good efficacy. However, tumor progression due to AR-dependent and AR-independent mechanisms is often observed after some time, and novel treatment strategies are urgently needed. Dysregulation of the PI3K/AKT/mTOR pathway in advanced prostate cancer and its implication in treatment resistance has been reported. We compared the impact of PI3K/AKT/mTOR pathway inhibitors with different selectivity profiles on in vitro cell proliferation and on caspase 3/7 activation as a marker for apoptosis induction, and observed the strongest effects in the androgen-sensitive prostate cancer cell lines VCaP and LNCaP. Combination treatment with the AR inhibitor darolutamide led to enhanced apoptosis in these cell lines, the effects being most pronounced upon cotreatment with the pan-PI3K inhibitor copanlisib. A subsequent transcriptomic analysis performed in VCaP cells revealed that combining darolutamide with copanlisib impacted gene expression much more than individual treatment. A comprehensive reversal of the androgen response and the mTORC1 transcriptional programs as well as a marked induction of DNA damage was observed. Next, an in vivo efficacy study was performed using the androgen-sensitive patient-derived prostate cancer (PDX) model LuCaP 35 and a superior efficacy was observed after the combined treatment with copanlisib and darolutamide. Importantly, immunohistochemistry analysis of these treated tumors showed increased apoptosis, as revealed by elevated levels of cleaved caspase 3 and Bcl-2-binding component 3 (BBC3). In conclusion, these data demonstrate that concurrent blockade of the PI3K/AKT/mTOR and AR pathways has superior antitumor efficacy and induces apoptosis in androgen-sensitive prostate cancer cell lines and PDX models.


Subject(s)
Prostatic Neoplasms , Proto-Oncogene Proteins c-akt , Male , Humans , Aged , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Androgen/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Caspase 3 , Androgens , TOR Serine-Threonine Kinases/metabolism , Prostatic Neoplasms/genetics , Cell Proliferation , Apoptosis , Cell Line, Tumor
2.
Int J Mol Sci ; 25(2)2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38255778

ABSTRACT

The advent of targeted therapies has led to tremendous improvements in treatment options and their outcomes in the field of oncology. Yet, many cancers outsmart precision drugs by developing on-target or off-target resistance mechanisms. Gaining the ability to resist treatment is the rule rather than the exception in tumors, and it remains a major healthcare challenge to achieve long-lasting remission in most cancer patients. Here, we discuss emerging strategies that take advantage of innovative high-throughput screening technologies to anticipate on- and off-target resistance mechanisms before they occur in treated cancer patients. We divide the methods into non-systematic approaches, such as random mutagenesis or long-term drug treatment, and systematic approaches, relying on the clustered regularly interspaced short palindromic repeats (CRISPR) system, saturated mutagenesis, or computational methods. All these new developments, especially genome-wide CRISPR-based screening platforms, have significantly accelerated the processes for identification of the mechanisms responsible for cancer drug resistance and opened up new avenues for future treatments.


Subject(s)
Antineoplastic Agents , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm/genetics , Mutagenesis
3.
Eur Urol ; 84(5): 455-460, 2023 11.
Article in English | MEDLINE | ID: mdl-37271632

ABSTRACT

Grade group 1 (GG1) primary prostate cancers with a pathologic Gleason score of 6 are considered indolent and generally not associated with fatal outcomes, so treatment is not indicated for most cases. These low-grade cancers have an overall negligible risk of locoregional progression and metastasis to distant organs, which is why there is an ongoing debate about whether these lesions should be reclassified as "noncancerous". However, the underlying molecular activity of key disease drivers, such as the androgen receptor (AR), have thus far not been thoroughly characterized in low-grade tumors. Therefore, we set out to delineate the AR chromatin-binding landscape in low-grade GG1 prostate cancers to gain insights into whether these AR-driven programs are actually tumor-specific or are normal prostate epithelium-like. These analyses showed that GG1 tumors do not harbor a distinct AR cistrome and, similar to higher-grade cancers, AR preferentially binds to tumor-defining cis-regulatory elements. Furthermore, the enhancer activity of these regions and the expression of their respective target genes were not significantly different in GG1 tumors. From an epigenetic perspective, this finding supports the cancer designation currently given to these low-grade tumors and clearly distinguishes them from noncancerous benign tissue. PATIENT SUMMARY: We characterized the molecular activity of the androgen receptor protein, which drives prostate cancer disease, in low-grade tumors. Our results show that these tumors are true cancers and are clearly separate from benign prostate tissue despite their low clinical aggressiveness.


Subject(s)
Prostatic Neoplasms , Receptors, Androgen , Male , Humans , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Neoplasm Grading , Prostatic Neoplasms/pathology , Prostate/pathology
4.
Cell Death Dis ; 14(4): 296, 2023 04 29.
Article in English | MEDLINE | ID: mdl-37120445

ABSTRACT

The diffuse nature of Glioblastoma (GBM) tumors poses a challenge to current therapeutic options. We have previously shown that Acyl-CoA Binding Protein (ACBP, also known as DBI) regulates lipid metabolism in GBM cells, favoring fatty acid oxidation (FAO). Here we show that ACBP downregulation results in wide transcriptional changes affecting invasion-related genes. In vivo experiments using patient-derived xenografts combined with in vitro models demonstrated that ACBP sustains GBM invasion via binding to fatty acyl-CoAs. Blocking FAO mimics ACBPKD-induced immobility, a cellular phenotype that can be rescued by increasing FAO rates. Further investigation into ACBP-downstream pathways served to identify Integrin beta-1, a gene downregulated upon inhibition of either ACBP expression or FAO rates, as a mediator for ACBP's role in GBM invasion. Altogether, our findings highlight a role for FAO in GBM invasion and reveal ACBP as a therapeutic vulnerability to stall FAO and subsequent cell invasion in GBM tumors.


Subject(s)
Carrier Proteins , Glioblastoma , Humans , Carrier Proteins/metabolism , Glioblastoma/genetics , Diazepam Binding Inhibitor/metabolism , Lipid Metabolism , Fatty Acids/metabolism
5.
Int J Mol Sci ; 23(11)2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35682963

ABSTRACT

Cancer arises following alterations at different cellular levels, including genetic and epigenetic modifications, transcription and translation dysregulation, as well as metabolic variations. High-throughput omics technologies that allow one to identify and quantify processes involved in these changes are now available and have been instrumental in generating a wealth of steadily increasing data from patient tumors, liquid biopsies, and from tumor models. Extensive investigation and integration of these data have led to new biological insights into the origin and development of multiple cancer types and helped to unravel the molecular networks underlying this complex pathology. The comprehensive and quantitative analysis of a molecule class in a biological sample is named omics and large-scale omics studies addressing different prostate cancer stages have been performed in recent years. Prostate tumors represent the second leading cancer type and a prevalent cause of cancer death in men worldwide. It is a very heterogenous disease so that evaluating inter- and intra-tumor differences will be essential for a precise insight into disease development and plasticity, but also for the development of personalized therapies. There is ample evidence for the key role of the androgen receptor, a steroid hormone-activated transcription factor, in driving early and late stages of the disease, and this led to the development and approval of drugs addressing diverse targets along this pathway. Early genomic and transcriptomic studies have allowed one to determine the genes involved in prostate cancer and regulated by androgen signaling or other tumor-relevant signaling pathways. More recently, they have been supplemented by epigenomic, cistromic, proteomic and metabolomic analyses, thus, increasing our knowledge on the intricate mechanisms involved, the various levels of regulation and their interplay. The comprehensive investigation of these omics approaches and their integration into multi-omics analyses have led to a much deeper understanding of the molecular pathways involved in prostate cancer progression, and in response and resistance to therapies. This brings the hope that novel vulnerabilities will be identified, that existing therapies will be more beneficial by targeting the patient population likely to respond best, and that bespoke treatments with increased efficacy will be available soon.


Subject(s)
Prostatic Neoplasms , Proteomics , Epigenomics , Genomics , Humans , Male , Prostate/metabolism , Prostatic Neoplasms/metabolism
6.
Cancers (Basel) ; 15(1)2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36611998

ABSTRACT

Several inhibitors of androgen receptor (AR) function are approved for prostate cancer treatment, and their impact on gene transcription has been described. However, the ensuing effects at the protein level are far less well understood. We focused on the AR signaling inhibitor darolutamide and confirmed its strong AR binding and antagonistic activity using the high throughput cellular thermal shift assay (CETSA HT). Then, we generated comprehensive, quantitative proteomic data from the androgen-sensitive prostate cancer cell line VCaP and compared them to transcriptomic data. Following treatment with the synthetic androgen R1881 and darolutamide, global mass spectrometry-based proteomics and label-free quantification were performed. We found a generally good agreement between proteomic and transcriptomic data upon androgen stimulation and darolutamide inhibition. Similar effects were found both for the detected expressed genes and their protein products as well as for the corresponding biological programs. However, in a few instances there was a discrepancy in the magnitude of changes induced on gene expression levels compared to the corresponding protein levels, indicating post-transcriptional regulation of protein abundance. Chromatin immunoprecipitation DNA sequencing (ChIP-seq) and Hi-C chromatin immunoprecipitation (HiChIP) revealed the presence of androgen-activated AR-binding regions and long-distance AR-mediated loops at these genes.

7.
Cell Oncol (Dordr) ; 44(3): 581-594, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33492659

ABSTRACT

PURPOSE: 5' adenosine monophosphate-activated kinase (AMPK) is an essential regulator of cellular energy homeostasis and has been associated with different pathologies, including cancer. Precisely defining the biological role of AMPK necessitates the availability of a potent and selective inhibitor. METHODS: High-throughput screening and chemical optimization were performed to identify a novel AMPK inhibitor. Cell proliferation and mechanistic assays, as well as gene expression analysis and chromatin immunoprecipitation were used to investigate the cellular impact as well as the crosstalk between lipid metabolism and androgen signaling in prostate cancer models. Also, fatty acid turnover was determined by examining lipid droplet formation. RESULTS: We identified BAY-3827 as a novel and potent AMPK inhibitor with additional activity against ribosomal 6 kinase (RSK) family members. It displays strong anti-proliferative effects in androgen-dependent prostate cancer cell lines. Analysis of genes involved in AMPK signaling revealed that the expression of those encoding 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), fatty acid synthase (FASN) and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 (PFKFB2), all of which are involved in lipid metabolism, was strongly upregulated by androgen in responsive models. Chromatin immunoprecipitation DNA-sequencing (ChIP-seq) analysis identified several androgen receptor (AR) binding peaks in the HMGCR and PFKFB2 genes. BAY-3827 strongly down-regulated the expression of lipase E (LIPE), cAMP-dependent protein kinase type II-beta regulatory subunit (PRKAR2B) and serine-threonine kinase AKT3 in responsive prostate cancer cell lines. Also, the expression of members of the carnitine palmitoyl-transferase 1 (CPT1) family was inhibited by BAY-3827, and this was paralleled by impaired lipid flux. CONCLUSIONS: The availability of the potent inhibitor BAY-3827 will contribute to a better understanding of the role of AMPK signaling in cancer, especially in prostate cancer.


Subject(s)
AMP-Activated Protein Kinases/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Prostatic Neoplasms , Cell Line, Tumor , Humans , Male , Signal Transduction/drug effects
8.
Mol Oncol ; 14(9): 2022-2039, 2020 09.
Article in English | MEDLINE | ID: mdl-32333502

ABSTRACT

Prostate cancer (PCa) is one of the most frequent tumor types in the male Western population. Early-stage PCa and late-stage PCa are dependent on androgen signaling, and inhibitors of the androgen receptor (AR) axis represent the standard therapy. Here, we studied in detail the global impact of darolutamide, a newly approved AR antagonist, on the transcriptome and AR-bound cistrome in two PCa cell models. Darolutamide strongly depleted the AR from gene regulatory regions and abolished AR-driven transcriptional signaling. Enhancer activation was blocked at the chromatin level as evaluated by H3K27 acetylation (H3K27ac), H3K4 monomethylation (H3K4me1), and FOXA1, MED1, and BRD4 binding. We identified genomic regions with high affinities for the AR in androgen-stimulated, but also in androgen-depleted conditions. A similar AR affinity pattern was observed in healthy and PCa tissue samples. High FOXA1, BRD4, H3K27ac, and H3K4me1 levels were found to mark regions showing AR binding in the hormone-depleted setting. Conversely, low FOXA1, BRD4, and H3K27ac levels were observed at regulatory sites that responded strongly to androgen stimulation, and AR interactions at these sites were blocked by darolutamide. Beside marked loss of AR occupancy, FOXA1 recruitment to chromatin was also clearly reduced after darolutamide treatment. We furthermore identified numerous androgen-regulated super-enhancers (SEs) that were associated with hallmark androgen and cell proliferation-associated gene sets. Importantly, these SEs are also active in PCa tissues and sensitive to darolutamide treatment in our models. Our findings demonstrate that darolutamide is a potent AR antagonist blocking genome-wide AR enhancer and SE activation, and downstream transcription. We also show the existence of a dynamic AR cistrome that depends on the androgen levels and on high AR affinity regions present in PCa cell lines and also in tissue samples.


Subject(s)
Androgens/metabolism , Enhancer Elements, Genetic/genetics , Pyrazoles/pharmacology , Signal Transduction , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Genome, Human , Hepatocyte Nuclear Factor 3-alpha/metabolism , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Receptors, Androgen/metabolism , Signal Transduction/drug effects , Transcription, Genetic/drug effects
9.
Cancers (Basel) ; 12(1)2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31947537

ABSTRACT

Inhibiting the interaction of menin with the histone methyltransferase MLL1 (KMT2A) has recently emerged as a novel therapeutic strategy. Beneficial therapeutic effects have been postulated in leukemia, prostate, breast, liver and in synovial sarcoma models. In those indications, MLL1 recruitment by menin was described to critically regulate the expression of disease associated genes. However, most findings so far rely on single study reports. Here we independently evaluated the pathogenic functions of the menin-MLL interaction in a large set of different cancer models with a potent and selective probe inhibitor BAY-155. We characterized the inhibition of the menin-MLL interaction for anti-proliferation, gene transcription effects, and for efficacy in several in vivo xenografted tumor models. We found a specific therapeutic activity of BAY-155 primarily in AML/ALL models. In solid tumors, we observed anti-proliferative effects of BAY-155 in a surprisingly limited fraction of cell line models. These findings were further validated in vivo. Overall, our study using a novel, highly selective and potent inhibitor, shows that the menin-MLL interaction is not essential for the survival of most solid cancer models. We can confirm that disrupting the menin-MLL complex has a selective therapeutic benefit in MLL-fused leukemia. In solid cancers, effects are restricted to single models and more limited than previously claimed.

10.
Endocr Relat Cancer ; 27(2): 67-79, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31804970

ABSTRACT

Prostate cancer development and progression is largely dependent on androgen receptor (AR) signaling. AR is a hormone-dependent transcription factor, which binds to thousands of sites throughout the human genome to regulate expression of directly responsive genes, including pro-survival genes that enable tumor cells to cope with increased cellular stress. ERN1 and XBP1 - two key players of the unfolded protein response (UPR) - are among such stress-associated genes. Here, we show that XBP1 levels in primary prostate cancer are associated with biochemical recurrence in five independent cohorts. Patients who received AR-targeted therapies had significantly lower XBP1 expression, whereas expression of the active form of XBP1 (XBP1s) was elevated. In vitro results show that AR-induced ERN1 expression led to increased XBP1s mRNA and protein levels. Furthermore, ChIP-seq analysis revealed that XBP1s binds enhancers upon stress stimuli regulating genes involved in UPR processes, eIF2 signaling and protein ubiquitination. We further demonstrate genomic overlap of AR- and XBP1s-binding sites, suggesting genomic conversion of the two signaling cascades. Transcriptomic effects of XBP1 were further studied by knockdown experiments, which lead to decreased expression of androgen-responsive genes and UPR genes. These results suggest a two-step mechanism of gene regulation, which involves androgen-induced expression of ERN1, thereby enhancing XBP1 splicing and transcriptional activity. This signaling cascade may prepare the cells for the increased protein folding, mRNA decay and translation that accompanies AR-regulated tumor cell proliferation.


Subject(s)
Androgens/pharmacology , Endoribonucleases/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Prostatic Neoplasms/pathology , Protein Serine-Threonine Kinases/metabolism , Receptors, Androgen/metabolism , Unfolded Protein Response/genetics , X-Box Binding Protein 1/metabolism , Apoptosis , Biomarkers, Tumor , Cell Proliferation , Cohort Studies , Endoribonucleases/genetics , Humans , Male , Prognosis , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Protein Serine-Threonine Kinases/genetics , Receptors, Androgen/genetics , Survival Rate , Tumor Cells, Cultured , X-Box Binding Protein 1/genetics
11.
J Hematol Oncol ; 12(1): 66, 2019 06 28.
Article in English | MEDLINE | ID: mdl-31253180

ABSTRACT

INTRODUCTION: The chromosomal rearrangements of the mixed-lineage leukemia gene MLL (KMT2A) have been extensively characterized as a potent oncogenic driver in leukemia. For its oncogenic function, most MLL-fusion proteins exploit the multienzyme super elongation complex leading to elevated expression of MLL target genes. High expression of MLL target genes overwrites the normal hematopoietic differentiation program, resulting in undifferentiated blasts characterized by the capacity to self-renew. Although extensive resources devoted to increased understanding of therapeutic targets to overcome de-differentiation in ALL/AML, the inter-dependencies of targets are still not well described. The majority of inhibitors potentially interfering with MLL-fusion protein driven transformation have been characterized in individual studies, which so far hindered their direct cross-comparison. METHODS: In our study, we characterized head-to-head clinical stage inhibitors for BET, DHODH, DOT1L as well as two novel inhibitors for CDK9 and the Menin-MLL interaction with a focus on differentiation induction. We profiled those inhibitors for global gene expression effects in a large cell line panel and examined cellular responses such as inhibition of proliferation, apoptosis induction, cell cycle arrest, surface marker expression, morphological phenotype changes, and phagocytosis as functional differentiation readout. We also verified the combination potential of those inhibitors on proliferation and differentiation level. RESULTS: Our analysis revealed significant differences in differentiation induction and in modulating MLL-fusion target gene expression. We observed Menin-MLL and DOT1L inhibitors act very specifically on MLL-fused leukemia cell lines, whereas inhibitors of BET, DHODH and P-TEFb have strong effects beyond MLL-fusions. Significant differentiation effects were detected for Menin-MLL, DOT1L, and DHODH inhibitors, whereas BET and CDK9 inhibitors primarily induced apoptosis in AML/ALL cancer models. For the first time, we explored combination potential of the abovementioned inhibitors with regards to overcoming the differentiation blockage. CONCLUSION: Our findings show substantial diversity in the molecular activities of those inhibitors and provide valuable insights into the further developmental potential as single agents or in combinations in MLL-fused leukemia.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Histone-Lysine N-Methyltransferase/genetics , Leukemia/drug therapy , Myeloid-Lymphoid Leukemia Protein/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Gene Expression Regulation, Leukemic/drug effects , Gene Rearrangement/drug effects , Histone-Lysine N-Methyltransferase/metabolism , Humans , Leukemia/genetics , Leukemia/metabolism , Myeloid-Lymphoid Leukemia Protein/metabolism , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Protein Interaction Maps/drug effects , Proto-Oncogene Proteins/metabolism
12.
Int J Mol Sci ; 20(12)2019 Jun 13.
Article in English | MEDLINE | ID: mdl-31200487

ABSTRACT

Recent advances in whole-genome and transcriptome sequencing of prostate cancer at different stages indicate that a large number of mutations found in tumors are present in non-protein coding regions of the genome and lead to dysregulated gene expression. Single nucleotide variations and small mutations affecting the recruitment of transcription factor complexes to DNA regulatory elements are observed in an increasing number of cases. Genomic rearrangements may position coding regions under the novel control of regulatory elements, as exemplified by the TMPRSS2-ERG fusion and the amplified enhancer identified upstream of the androgen receptor (AR) gene. Super-enhancers are increasingly found to play important roles in aberrant oncogenic transcription. Several players involved in these processes are currently being evaluated as drug targets and may represent new vulnerabilities that can be exploited for prostate cancer treatment. They include factors involved in enhancer and super-enhancer function such as bromodomain proteins and cyclin-dependent kinases. In addition, non-coding RNAs with an important gene regulatory role are being explored. The rapid progress made in understanding the influence of the non-coding part of the genome and of transcription dysregulation in prostate cancer could pave the way for the identification of novel treatment paradigms for the benefit of patients.


Subject(s)
Gene Expression Regulation, Neoplastic , Prostatic Neoplasms/genetics , Transcriptional Activation , Animals , Enhancer Elements, Genetic , Humans , Male , Promoter Regions, Genetic , Prostatic Neoplasms/metabolism
13.
Int J Cancer ; 145(5): 1382-1394, 2019 09 01.
Article in English | MEDLINE | ID: mdl-30828788

ABSTRACT

Darolutamide is a novel androgen receptor (AR) antagonist with a distinct chemical structure compared to other AR antagonists and currently in clinical Phase 3 trials for prostate cancer. Using cell-based transactivation assays, we demonstrate that darolutamide, its diastereomers and its main metabolite keto-darolutamide are strong, competitive antagonists for AR wild type, and also for several mutants identified in prostate cancer patients for which other AR antagonists show reduced antagonism or even agonism. Darolutamide, its two diastereomers and main metabolite are also strong antagonists in assays measuring AR N/C interaction and homodimerization. Molecular modeling suggests that the flexibility of darolutamide allows accommodation in the W742C/L mutated AR ligand-binding pocket while for enzalutamide the loss of the important hydrophobic interaction with W742 leads to reduced AR interaction. This correlates with an antagonistic pattern profile of coregulator recruitment for darolutamide. In vitro efficacy studies performed with androgen-dependent prostate cancer cell lines show that darolutamide strongly reduces cell viability and potently inhibits spheroid formation. Also, a marked down-regulation of androgen target genes paralleled by decreased AR binding to gene regulatory regions is seen. In vivo studies reveal that oral dosing of darolutamide markedly reduces growth of the LAPC-4 cell line-derived xenograft and of the KuCaP-1 patient-derived xenograft. Altogether, these results substantiate a unique antagonistic profile of darolutamide and support further development as a prostate cancer drug.


Subject(s)
Androgen Receptor Antagonists/pharmacology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/metabolism , Pyrazoles/pharmacology , Receptors, Androgen/metabolism , Androgen Receptor Antagonists/chemistry , Animals , Cell Line, Tumor , Gene Expression/drug effects , Humans , Male , Mice , Mice, SCID , Models, Molecular , Prostatic Neoplasms, Castration-Resistant/genetics , Protein Domains , Pyrazoles/chemistry , Receptors, Androgen/chemistry , Receptors, Androgen/genetics , Xenograft Model Antitumor Assays
14.
Life Sci Alliance ; 2(1): e201800115, 2019 02.
Article in English | MEDLINE | ID: mdl-30620009

ABSTRACT

Chromatin immunoprecipitation (ChIP)-seq analyses of transcription factors in clinical specimens are challenging due to the technical limitations and low quantities of starting material, often resulting in low enrichments and poor signal-to-noise ratio. Here, we present an optimized protocol for transcription factor ChIP-seq analyses in human tissue, yielding an ∼100% success rate for all transcription factors analyzed. As proof of concept and to illustrate general applicability of the approach, human tissue from the breast, prostate, and endometrial cancers were analyzed. In addition to standard formaldehyde fixation, disuccinimidyl glutarate was included in the procedure, greatly increasing data quality. To illustrate the sensitivity of the optimized protocol, we provide high-quality ChIP-seq data for three independent factors (AR, FOXA1, and H3K27ac) from a single core needle prostate cancer biopsy specimen. In summary, double-cross-linking strongly improved transcription factor ChIP-seq quality on human tumor samples, further facilitating and enhancing translational research on limited amounts of tissue.


Subject(s)
Chromatin Immunoprecipitation Sequencing/methods , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Transcription Factors/genetics , Base Sequence/genetics , Binding Sites/genetics , Biopsy, Large-Core Needle , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Data Accuracy , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Female , Hepatocyte Nuclear Factor 3-alpha/genetics , Histones/genetics , Humans , MCF-7 Cells , Male , Receptors, Androgen/genetics , Sensitivity and Specificity
15.
Nat Commun ; 9(1): 4900, 2018 11 21.
Article in English | MEDLINE | ID: mdl-30464211

ABSTRACT

The Androgen Receptor (AR) is the key-driving transcription factor in prostate cancer, tightly controlled by epigenetic regulation. To date, most epigenetic profiling has been performed in cell lines or limited tissue samples. Here, to comprehensively study the epigenetic landscape, we perform RNA-seq with ChIP-seq for AR and histone modification marks (H3K27ac, H3K4me3, H3K27me3) in 100 primary prostate carcinomas. Integrative molecular subtyping of the five data streams revealed three major subtypes of which two were clearly TMPRSS2-ERG dictated. Importantly, we identify a third subtype with low chromatin binding and activity of AR, but with high activity of FGF and WNT signaling. While positive for neuroendocrine-hallmark genes, these tumors were copy number-neutral with low mutational burden, significantly depleted for genes characteristic of poor-outcome associated luminal B-subtype. We present a unique resource on transcriptional and epigenetic control in prostate cancer, revealing tight control of gene regulation differentially dictated by AR over three subtypes.


Subject(s)
Carcinoma/metabolism , Epigenomics , Histones/metabolism , Prostatic Neoplasms/metabolism , Receptors, Androgen/metabolism , Aged , Epigenesis, Genetic , Humans , Male , Middle Aged , Molecular Typing , Sequence Analysis, RNA
16.
Mol Oncol ; 12(8): 1308-1323, 2018 08.
Article in English | MEDLINE | ID: mdl-29808619

ABSTRACT

Fibroblasts are abundantly present in the prostate tumor microenvironment (TME), including cancer-associated fibroblasts (CAFs) which play a key role in cancer development. Androgen receptor (AR) signaling is the main driver of prostate cancer (PCa) progression, and stromal cells in the TME also express AR. High-grade tumor and poor clinical outcome are associated with low AR expression in the TME, which suggests a protective role of AR signaling in the stroma against PCa development. However, the mechanism of this relation is not clear. In this study, we isolated AR-expressing CAF-like cells. Testosterone (R1881) exposure did not affect CAF-like cell morphology, proliferation, or motility. PCa cell growth was not affected by culturing in medium from R1881-exposed CAF-like cells; however, migration of PCa cells was inhibited. AR chromatin immune precipitation sequencing (ChIP-seq) was performed and motif search suggested that AR in CAF-like cells bound the chromatin through AP-1-elements upon R1881 exposure, inducing enhancer-mediated AR chromatin interactions. The vast majority of chromatin binding sites in CAF-like cells were unique and not shared with AR sites observed in PCa cell lines or tumors. AR signaling in CAF-like cells decreased expression of multiple cytokines; most notably CCL2 and CXCL8 and both cytokines increased migration of PCa cells. These results suggest direct paracrine regulation of PCa cell migration by CAFs through AR signaling.


Subject(s)
Cancer-Associated Fibroblasts/pathology , Cell Movement , Chemokine CCL2/metabolism , Interleukin-8/metabolism , Prostatic Neoplasms/pathology , Receptors, Androgen/metabolism , Signal Transduction , Aged , Cancer-Associated Fibroblasts/metabolism , Chemokine CCL2/analysis , Humans , Interleukin-8/analysis , Male , Middle Aged , Prostate/metabolism , Prostate/pathology , Prostatic Neoplasms/metabolism , Receptors, Androgen/analysis
17.
Int J Mol Sci ; 19(5)2018 May 04.
Article in English | MEDLINE | ID: mdl-29734647

ABSTRACT

Novel drugs, drug sequences and combinations have improved the outcome of prostate cancer in recent years. The latest approvals include abiraterone acetate, enzalutamide and apalutamide which target androgen receptor (AR) signaling, radium-223 dichloride for reduction of bone metastases, sipuleucel-T immunotherapy and taxane-based chemotherapy. Adding abiraterone acetate to androgen deprivation therapy (ADT) in order to achieve complete androgen blockade has proven highly beneficial for treatment of locally advanced prostate cancer and metastatic hormone-sensitive prostate cancer (mHSPC). Also, ADT together with docetaxel treatment showed significant benefit in mHSPC. Ongoing clinical trials for different subgroups of prostate cancer patients include the evaluation of the second-generation AR antagonists enzalutamide, apalutamide and darolutamide, of inhibitors of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) pathway, of inhibitors of DNA damage response, of targeted alpha therapy and of prostate-specific membrane antigen (PSMA) targeting approaches. Advanced clinical studies with immune checkpoint inhibitors have shown limited benefits in prostate cancer and more trials are needed to demonstrate efficacy. The identification of improved, personalized treatments will be much supported by the major progress recently made in the molecular characterization of early- and late-stage prostate cancer using “omics” technologies. This has already led to novel classifications of prostate tumors based on gene expression profiles and mutation status, and should greatly help in the choice of novel targeted therapies best tailored to the needs of patients.


Subject(s)
Androgen Receptor Antagonists/therapeutic use , Drug Discovery , Immunotherapy , Prostatic Neoplasms/drug therapy , Abiraterone Acetate/therapeutic use , Antigens, Surface/genetics , Benzamides , Glutamate Carboxypeptidase II/genetics , Humans , Male , Nitriles , Phenylthiohydantoin/analogs & derivatives , Phenylthiohydantoin/therapeutic use , Prostate/metabolism , Prostate/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Radioisotopes/therapeutic use , Radium/therapeutic use , Receptors, Androgen/drug effects , Receptors, Androgen/genetics , Thiohydantoins/therapeutic use
18.
Oncotarget ; 8(55): 93867-93877, 2017 Nov 07.
Article in English | MEDLINE | ID: mdl-29212195

ABSTRACT

Increasing evidence from epidemiological and pathological studies suggests a role of the immune system in the initiation and progression of multiple cancers, including prostate cancer. Reports on the contribution of the adaptive immune system are contradictive, since both suppression and acceleration of disease development have been reported. This study addresses the functional role of lymphocytes in prostate cancer development using a genetically engineered mouse model (GEMM) of human c-Myc driven prostate cancer (Hi-Myc mice) combined with B and T cell deficiency (RAG1-/- mice). From a pre-cancerous stage on, Hi-Myc mice showed higher accumulation of immune cells in their prostates then wild-type mice, of which macrophages were the most abundant. The onset of invasive adenocarcinoma was delayed in Hi-MycRAG1-/- compared to Hi-Myc mice and associated with decreased infiltration of leukocytes into the prostate. In addition, lower levels of the cytokines CXCL2, CCL5 and TGF-ß1 were detected in Hi-MycRAG1-/- compared to Hi-Myc mouse prostates. These results from a GEMM of prostate cancer provide new insights into the promoting role of the adaptive immune system in prostate cancer development. Our findings indicate that the endogenous adaptive immune system does not protect against de novo prostate carcinogenesis in Hi-Myc transgenic mice, but rather accelerates the formation of invasive adenocarcinomas. This may have implications for the development of novel treatment strategies.

19.
Proc Natl Acad Sci U S A ; 114(8): E1316-E1325, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28167798

ABSTRACT

The DNA-binding sites of estrogen receptor α (ERα) show great plasticity under the control of hormones and endocrine therapy. Tamoxifen is a widely applied therapy in breast cancer that affects ERα interactions with coregulators and shifts the DNA-binding signature of ERα upon prolonged exposure in breast cancer. Although tamoxifen inhibits the progression of breast cancer, it increases the risk of endometrial cancer in postmenopausal women. We therefore asked whether the DNA-binding signature of ERα differs between endometrial tumors that arise in the presence or absence of tamoxifen, indicating divergent enhancer activity for tumors that develop in different endocrine milieus. Using ChIP sequencing (ChIP-seq), we compared the ERα profiles of 10 endometrial tumors from tamoxifen users with those of six endometrial tumors from nonusers and integrated these results with the transcriptomic data of 47 endometrial tumors from tamoxifen users and 64 endometrial tumors from nonusers. The ERα-binding sites in tamoxifen-associated endometrial tumors differed from those in the tumors from nonusers and had distinct underlying DNA sequences and divergent enhancer activity as marked by histone 3 containing the acetylated lysine 27 (H3K27ac). Because tamoxifen acts as an agonist in the postmenopausal endometrium, similar to estrogen in the breast, we compared ERα sites in tamoxifen-associated endometrial cancers with publicly available ERα ChIP-seq data in breast tumors and found a striking resemblance in the ERα patterns of the two tissue types. Our study highlights the divergence between endometrial tumors that arise in different hormonal conditions and shows that ERα enhancer use in human cancer differs in the presence of nonphysiological endocrine stimuli.


Subject(s)
Antineoplastic Agents, Hormonal/therapeutic use , Endometrial Neoplasms/drug therapy , Estrogen Receptor alpha/metabolism , Tamoxifen/therapeutic use , Adult , Aged , Aged, 80 and over , Breast/drug effects , Breast/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Endometrial Neoplasms/metabolism , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Middle Aged , Transcriptome/drug effects
20.
Cancer Res ; 76(13): 3773-84, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27197147

ABSTRACT

Tamoxifen, a small-molecule antagonist of the transcription factor estrogen receptor alpha (ERα) used to treat breast cancer, increases risks of endometrial cancer. However, no parallels of ERα transcriptional action in breast and endometrial tumors have been found that might explain this effect. In this study, we addressed this issue with a genome-wide assessment of ERα-chromatin interactions in surgical specimens obtained from patients with tamoxifen-associated endometrial cancer. ERα was found at active enhancers in endometrial cancer cells as marked by the presence of RNA polymerase II and the histone marker H3K27Ac. These ERα binding sites were highly conserved between breast and endometrial cancer and enriched in binding motifs for the transcription factor FOXA1, which displayed substantial overlap with ERα binding sites proximal to genes involved in classical ERα target genes. Multifactorial ChIP-seq data integration from the endometrial cancer cell line Ishikawa illustrated a functional genomic network involving ERα and FOXA1 together with the enhancer-enriched transcriptional regulators p300, FOXM1, TEAD4, FNFIC, CEBP8, and TCF12. Immunohistochemical analysis of 230 primary endometrial tumor specimens showed that lack of FOXA1 and ERα expression was associated with a longer interval between breast cancer and the emergence of endometrial cancer, exclusively in tamoxifen-treated patients. Our results define conserved sites for a genomic interplay between FOXA1 and ERα in breast cancer and tamoxifen-associated endometrial cancer. In addition, FOXA1 and ERα are associated with the interval time between breast cancer and endometrial cancer only in tamoxifen-treated breast cancer patients. Cancer Res; 76(13); 3773-84. ©2016 AACR.


Subject(s)
Breast Neoplasms/genetics , Endometrial Neoplasms/genetics , Estrogen Receptor alpha/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Hepatocyte Nuclear Factor 3-alpha/metabolism , Response Elements/genetics , Tamoxifen/therapeutic use , Antineoplastic Agents, Hormonal/therapeutic use , Biomarkers, Tumor/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Chromatin Immunoprecipitation , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/metabolism , Endometrial Neoplasms/pathology , Estrogen Receptor alpha/genetics , Female , Hepatocyte Nuclear Factor 3-alpha/genetics , Humans , Immunoenzyme Techniques , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...