Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Biochim Biophys Acta ; 1808(1): 209-18, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20828535

ABSTRACT

We used fluorescence spectroscopy and surface tensiometry to study the interaction between low-generation (G1 and G4) poly(amidoamine) (PAMAM) dendrimers, potential vehicles for intracellular drug delivery, and model lipid bilayers. Membrane association of fluorescently labeled dendrimers, measured by fluorescence anisotropy, increased with increasing size of the dendrimer and with increasing negative charge density in the membrane, indicating the electrostatic nature of the interaction. When the membrane was doped with pyrene-labeled phosphatidyl glycerol (pyrene-PG), pyrene excimer fluorescence demonstrated a dendrimer-induced selective aggregation of negatively charged lipids when the membrane was in the liquid crystalline state. A nonlinear Stern-Volmer quenching of dendrimer fluorescence with cobalt bromide suggested a dendrimer-induced aggregation of lipid vesicles, which increased with the dendrimer's generation number. Surface tensiometry measurements showed that dendrimers penetrated into the lipid monolayer only at subphysiologic surface pressures (<30mN/m). We conclude that the low-generation PAMAM dendrimers associate with lipid membranes predominantly electrostatically, without significantly compromising the bilayer integrity. They bind stronger to membranes with higher fluidity and lower surface pressure, which are characteristic of rapidly dividing cells.


Subject(s)
Amines/chemistry , Cell Membrane/metabolism , Dendrimers/chemistry , Lipids/chemistry , Nylons/chemistry , Crystallization , Fluoresceins/chemistry , Fluorescence Polarization , Kinetics , Light , Lipid Bilayers/chemistry , Permeability , Pyrenes/chemistry , Spectrometry, Fluorescence/methods , Surface Properties
3.
Biophys Chem ; 144(1-2): 53-61, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19589636

ABSTRACT

Cyt1A is a cytolytic toxin from Bacillus thuringiensis var. israelensis. A computer model of the toxin in solution was generated and validated by resonance energy transfer (RET). The average distance between the two tryptophans (residues 158 and 161) and the fluorescently labeled cysteine 190 was 2.16 nm, which closely matched the distance predicted in computer simulations, 2.2 nm. The simulation results were able to explain two previous experimental observations: (i) amino-acid sequences of all Cyt toxins contain four blocks of highly conserved residues; and (ii) several single-point mutations drastically abrogated Cyt1A's toxicity. Selective randomization of atomic coordinates in the computer model revealed that the conserved blocks are important for proper folding and stability of the toxin molecule. Replacing lysine 225 with alanine, a mutation that renders the toxin inactive, was shown to result in breaking the hydrogen bonds between K225 and V126, L123, and Y189. Calculated Helmholtz free energy difference of the inactive mutation K225A was higher by 12 kcal/mol and 5 kcal/mol than the values for the benign mutations K118A and K198A, respectively, which indicates that the K225A mutant is significantly destabilized. The normal-mode and principal-component analyses revealed that in the wild-type Cyt1A the region around the residue K225 is quite stationary, due to the hydrogen-bond network around K225. In contrast, pronounced twisting and stretching were observed in the mutant K225A, and the region around the residue K225 becomes unstable. Our results indicate that conformational differences in this mutant spread far away from the site of the mutation, suggesting that the mutant is inactivated due to an overall change in conformation and diminished stability rather than due to a localized alteration of a "binding" or "active" site.


Subject(s)
Bacterial Proteins/chemistry , Endotoxins/chemistry , Fluorescence Resonance Energy Transfer , Hemolysin Proteins/chemistry , Bacillus thuringiensis Toxins , Binding Sites , Catalytic Domain , Computer Simulation , Protein Conformation , Thermodynamics , Tryptophan/chemistry
4.
Brain Res ; 1005(1-2): 90-100, 2004 Apr 16.
Article in English | MEDLINE | ID: mdl-15044069

ABSTRACT

Our study was designed to determine if compounds used experimentally to generate nitric oxide excess differ in ability to elicit degenerative stress to cholinergic neurons and, if so, what mechanisms account for their differences. Nitric oxide donors are often used experimentally in attempts to emulate the bioactivities of endogenous NO, but the pharmacological actions of NO donors can vary dramatically according to the species of NO (NOx) and other agents (e.g., iron cations, cyanide anion, superoxide anion) released, and as affected by the state of the cellular redox environment. To determine whether different types of NO donors exert differential toxicity in a cholinergic neuronal model, we measured cell viability markers, indicators of NOx formation, levels of intracellular-reduced glutathione (GSH), protein nitrosothiols, and the activation of the transcription factor NF-kappaB in a mouse medial septal cholinergic cell line (clone SN56) following exposure to the NO donors S-nitroso-N-acetyl-dl-penicillamine (SNAP), 3-morpholinosydnonimine (SIN-1), or sodium nitroprusside (SNP). SNAP and SIN-1, but not SNP, elicited dramatic increases in media nitrite and intracellular NOx-related fluorescence from cells preloaded with a NOx indicator. Nevertheless, SN56 cells were readily killed by SNP (IC(50) approximately 0.5 mM), while even higher levels (up to 2 mM) of SNAP or SIN-1 were essentially ineffective. SNAP (an NO(+) generator) and SIN-1 (a peroxynitrite generator) both caused increases in SN56 GSH levels; in contrast, SNP caused an immediate and rapid decline in GSH. The increase in GSH in response to SNAP and SIN-1 probably indicates augmentation of intracellular defense mechanisms, because prior depletion of GSH rendered the cells vulnerable to these two donors. GSH depletion did not change the potency of SNP, but GSH depletion made SNAP about twice as potent as SNP. SNAP and SNP, but not SIN-1, activated the transcription factor NF-kappaB, as indicated by increases in p65 nuclear immunoreactivity. Treatment with SNAP, but not SNP or SIN-1, increased levels of S-nitrosothiols in SN56 proteins, consistent with the transfer of an NO(+) equivalent to intracellular thiols. Our experiments show that these three NO donors differ dramatically in their ability to intoxicate SN56 cells, probably because of the different species of NOx and other agents they release, and as reflected in their differing modes of interaction with cellular antioxidant and survival systems.


Subject(s)
Cholinergic Fibers/metabolism , Glutathione/physiology , Neurons/metabolism , Nitric Oxide Donors/toxicity , Animals , Cell Line , Choline O-Acetyltransferase/metabolism , Cholinergic Fibers/drug effects , Dose-Response Relationship, Drug , Mice , Neurons/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...